(1+sin2φ)/(sina+cosφ)=sinφ+cosφ

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/02 15:23:56
(1+sin2φ)/(sina+cosφ)=sinφ+cosφ
x)0.3:ߦd$j'9@6&H(uv6ěhh ֌3&gE l\=0@ t-}ܥ/g.ydGÓt^s%bL K~ھ m ns^o|6Yh^9[n(;_Ʀd4lq,nۢ@4T@Ã

(1+sin2φ)/(sina+cosφ)=sinφ+cosφ
(1+sin2φ)/(sina+cosφ)=sinφ+cosφ

(1+sin2φ)/(sina+cosφ)=sinφ+cosφ
1=(sina)^2+(cosa)^2,(sina)^2+(cosa)^2+sin2a=(sina+cosa)^2,接下来除掉一个,还剩一个.这个可以看出来的哇

证明:(1+sin2φ)/(sinφ+cosφ)
=(sin²φ+cos²φ+sin2φ)/(sinφ+cosφ)
=(sin²φ+cos²φ+sin2φ)/(sinφ+cosφ)
=(sin²φ+cos²φ+2sinφcosφ)/(sinφ+cosφ)
=(sinφ+cosφ)²/(sinφ+cosφ)
=sinφ+cosφ