设函数f(x)=xlnx+4 若当x≥1时,恒有f(x)≤ax²-ax+4,求a的取值范围

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/19 16:46:00
设函数f(x)=xlnx+4 若当x≥1时,恒有f(x)≤ax²-ax+4,求a的取值范围
xS[oP*&& Y)1DwƒYI˘H1vݪ ЅYJi,綧}|[w=Ɔs1"]MH獷Gqk9*y)&nsxUFM\xf^>m#_)wI3Cg_ݡGV/;Xh6A'nks(/g(edԴ|IA>bn%'A~mÊ0%V yū)8A-KI}Y ?n| %翠^MAHu.lu = Oy)5f *ZZ` K/q٦:+0Pܐ.ru fISjԖ%D3×2|VCRyE^, $kSh:y% IEo! $a^np^^N1rǘ3 Kk_QD

设函数f(x)=xlnx+4 若当x≥1时,恒有f(x)≤ax²-ax+4,求a的取值范围
设函数f(x)=xlnx+4 若当x≥1时,恒有f(x)≤ax²-ax+4,求a的取值范围

设函数f(x)=xlnx+4 若当x≥1时,恒有f(x)≤ax²-ax+4,求a的取值范围
这个方法挺简单,但要用到二阶导.
f(x)≤ax²-ax+4等价于xlnx≤ax²-ax.等价于lnx≤a(x-1).(因为x≥1)
当x=1时,上式即为0≤0,恒成立.
当x>1时,x-1>0,上式即为a≥lnx/(x-1),只要求右边的最大值就行.
把右边记作函数g(x),求导得g'(x)=(1-1/x-lnx)/(x-1)²,分母恒为正,要研究g'(x)的正负,只需研究分子.
把分子记作h(x),求导得h'(x)1+1/x²-1/x>0.(因为x>1)
所以h(x)当x>1时单调增,所以h(x)>h(1)=0.
所以g'(x)的分子恒为正,所以g'(x)>0,所以g(x)在当x>1时单调增,所以g(x)的最大值不存在,当x趋于正无穷时,g(x)趋于0,所以a≥0.
综上,a≥0.
虽然看起来有点繁琐,但思路简单,想清楚就行了.