正数x,y满足x²-y²=2xy.求x-y/x+y的值

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/27 21:26:08
正数x,y满足x²-y²=2xy.求x-y/x+y的值
xSJ1ALL;HQdWB BZE.iU<3m7]9:E/贂#]eA6=ѕe^]Bt)dl8%=@ 塢,~bp{3@ ~ET3Dy ]ifԡ ~5:N VE_WU*!@fdRw' ;H5;јw[*vꊳlf 4B@?9ANґw`QfB!(飁poh@ b&$ ښ8'%eG6ֹ_TDT 5ckPgφ.49*xNaO4O #*%H &ORW=|rI>k,s4Hz\B,<.!/ yP

正数x,y满足x²-y²=2xy.求x-y/x+y的值
正数x,y满足x²-y²=2xy.求x-y/x+y的值

正数x,y满足x²-y²=2xy.求x-y/x+y的值
x²-y²=2xy
x²-2xy+y²=2y²
(x-y)^2=2y^2
(x-y-√2y)(x-y+√2y)=0
x1=(1+√2)y
x2=(1-√2)y(舍去)
x-y/x+y
=√2y/(2+√2)y
=√2*(2-√2)/2

答:
x²-y²=xy
x²-yx-y²=0
解得:
x=(y±√5y)/2
因为:x和y都是正数
所以:x=(1+√5)y/2
所以:x/y=(1+√5)/2
(x-y)/(x+y)
=(x/y-1)/(x/y+1)
=[(1+√5)/2-1]/[(1+√5)/2+1]

全部展开

答:
x²-y²=xy
x²-yx-y²=0
解得:
x=(y±√5y)/2
因为:x和y都是正数
所以:x=(1+√5)y/2
所以:x/y=(1+√5)/2
(x-y)/(x+y)
=(x/y-1)/(x/y+1)
=[(1+√5)/2-1]/[(1+√5)/2+1]
=(√5-1)/(√5+3)
=(√5-1)(3-√5)/4
=√5-2

收起

  • x^2-y^2=2xy

  • x^2-2xy+y^2-2y^2=0

  • (x-y)^2-2y^2=0

  • x-y-2^0.5y=0

  • x=1+根2*y

  • x-y/x+y=根2-1