已知{1+cosx-siny+sinxsiny=0,1-cosx-cosy+sinxcosy=0,求sinx的值.
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/20 22:36:39
xJ0_'16cG'/sKW/e,p:A;/;S_|I^%$:]W/KJN{~wq}ڒX! N䊇فsra$z:F*S%<ߌyVgiQp$:h$.6˛WŃVVao55%Dy7cid!6s5dXOWi5F
|Ph J
+ͣ E:ܺ ׀I=ݖJiy#x
Lp!`_~Ja
已知{1+cosx-siny+sinxsiny=0,1-cosx-cosy+sinxcosy=0,求sinx的值.
已知{1+cosx-siny+sinxsiny=0,1-cosx-cosy+sinxcosy=0,求sinx的值.
已知{1+cosx-siny+sinxsiny=0,1-cosx-cosy+sinxcosy=0,求sinx的值.
由已知两式可以得到:
1+cosx=siny(1-sinx)——(1)
1-cosx=cosy(1-sinx)——(2)
再由上面两式的平方和:
(1)的平方+(2)的平方得
2+2(cosx)^2=(1-sinx)^2
令z=sinx
则(cosx)^2=1-(sinx)^2=1-z^2
于是
2+2(1-z^2)=(1-z)^2
z=(1±√10)/3
再由(1)+(2)
(siny+cosy)*(1-sinx)=2
由于1-sinx≥0
所以siny+cosy>0
又由于siny+cosy=√2(sin(y+π/4))≤√2
于是1-sinx≥√2
即sinx
已知sinx+siny=1/3求siny-(cosx)^2的最小值和最大值
已知sinx+siny=1/3求siny-(cosx)^2的最小值
已知cosx+siny=1/2,求siny-cos^2x的最值
已知cosx+siny=1/2,求siny-cos^2的最值
jijiji~已知cosx+siny=1/2,求siny-cos^2*x的最值
已知cosx+siny=1/2,求siny-cos^2x的最值
已知1+cosx-siny+sinx*siny=0,1-cosx-cosy+sinx*cosy=0.求Sinx.
已知1+cosx-siny+sinx*siny=0,1-cosx-cosy+sinx*cosy=0,求sinx的值
已知cosx+siny=1/2,求siny-cosx平方的最值,要具体过程!在线等!
已知1+cosx-siny+sinxsiny=0,1-cosx-cosy+sinxcosy+0,求sinx
已知sinx+siny=cosx+cosy=1/2007,则sinx+cosx=多少
求y=(sinx)^2-cosx+2最值已知sinx+siny=1/3,求siny-(cosx)^2的最值
已知cosx+cosy=1/2,sinx-siny=1/3,求cos(x+y)
已知cosx+cosy=1/2,sinx-siny=1/3,则cos(x+y)=
已知sinx+siny=1,求cosx+cosy的值的范围是多少?
已知sinx+siny=1,求cosx+cosy的取值范围
已知sinx*cosy=1/2 求cosx*siny的取值范围
已知cosx+siny=1/2,求z=asiny+cos²x的最大值