某电子厂商投产一种新型电子产品,每件制造成本为18元,试销过程中发现,每月销售量y(万件)与销售单价x(元)之间的关系可以近似地看作一次函数y=-2x+100.(利润=售价-制造成本) (1)
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/30 17:36:40
某电子厂商投产一种新型电子产品,每件制造成本为18元,试销过程中发现,每月销售量y(万件)与销售单价x(元)之间的关系可以近似地看作一次函数y=-2x+100.(利润=售价-制造成本) (1)
某电子厂商投产一种新型电子产品,每件制造成本为18元,试销过程中发现,每月销售量y(万件)与销售单价x(元)之间的关系可以近似地看作一次函数y=-2x+100.(利润=售价-制造成本) (1)当销售单价为多少元时,厂商每月能获得350万元的利润?当销售单价为34元时,厂商每月能获得利润Z是多少万元.(2)根据相关部门规定,这种电子产品的销售单价不能高于32元,如果厂商要获得每月不低于350万元的利润,那么制造出这种产品每月的
某电子厂商投产一种新型电子产品,每件制造成本为18元,试销过程中发现,每月销售量y(万件)与销售单价x(元)之间的关系可以近似地看作一次函数y=-2x+100.(利润=售价-制造成本) (1)
(1)z
=(x﹣18)y
=(x﹣18)(﹣2x+100)
=﹣2x²+136x﹣1800,
∴z与x之间的函数解析式为z=﹣2x²+136x﹣1800;
(2)由z=350,
得350=﹣2x²+136x﹣1800,
解这个方程得:x1=25,x2=43
所以,销售单价定为25元或43元,厂商每月能获得350万元的利润.
将z=﹣2x²+136x﹣1800配方,
得z=﹣2(x﹣34)²+512,
因此,当销售单价为34元时,每月能获得最大利润,最大利润是512万元;
(3)结合(2)及函数z=﹣2x²+136x﹣1800的图象可知,
当25≤x≤43时z≥350,
又由限价32元,得25≤x≤32,
根据一次函数的性质,
得y=﹣2x+100中y随x的增大而减小,
∴当x=32时,每月制造成本最低.最低成本是18×(﹣2×32+100)=648(万元),
因此,所求每月最低制造成本为648万元.
25.(2012•聊城)某电子厂商投产一种新型电子厂品,每件制造成本为18元,试销过程中发现,每月销售量y(万件)与销售单价x(元)之间的关系可以近似地看作一次函数y=﹣2x+100.(利润=售价﹣制造成本)(1)写出每月的利润z(万元)与销售单价x(元)之间的函数关系式;(2)当销售单价为多少元时,厂商每月能获得3502万元的利润?当销售单价为多少元时,厂商每月能获得最大利润?最大利...
全部展开
25.(2012•聊城)某电子厂商投产一种新型电子厂品,每件制造成本为18元,试销过程中发现,每月销售量y(万件)与销售单价x(元)之间的关系可以近似地看作一次函数y=﹣2x+100.(利润=售价﹣制造成本)(1)写出每月的利润z(万元)与销售单价x(元)之间的函数关系式;(2)当销售单价为多少元时,厂商每月能获得3502万元的利润?当销售单价为多少元时,厂商每月能获得最大利润?最大利润是多少?(3)根据相关部门规定,这种电子产品的销售单价不能高于32元,如果厂商要获得每月不低于350万元的利润,那么制造出这种产品每月的最低制造成本需要多少万元?
考点: 二次函数的应用;一次函数的应用。分析: (1)根据每月的利润z=(x﹣18)y,再把y=﹣2x+100代入即可求出z与x之间的函数解析式,(2)把z=350代入z=﹣2x2+136x﹣1800,解这个方程即可,将z═﹣2x2+136x﹣1800配方,得z=﹣2(x﹣34)2+512,即可求出当销售单价为多少元时,厂商每月能获得最大利润,最大利润是多少.(3)结合(2)及函数z=﹣2x2+136x﹣1800的图象即可求出当25≤x≤43时z≥350,再根据限价32元,得出25≤x≤32,最后根据一次函数y=﹣2x+100中y随x的增大而减小,即可得出当x=32时,每月制造成本最低,最低成本是18×(﹣2×32+100) (1)z=(x﹣18)y=(x﹣18)(﹣2x+100)=﹣2x2+136x﹣1800,∴z与x之间的函数解析式为z=﹣2x2+136x﹣1800;
(2)由z=350,得350=﹣2x2+136x﹣1800,解这个方程得x1=25,x2=43所以,销售单价定为25元或43元,将z═﹣2x2+136x﹣1800配方,得z=﹣2(x﹣34)2+512,因此,当销售单价为34元时,每月能获得最大利润,最大利润是512万元;
(3)结合(2)及函数z=﹣2x2+136x﹣1800的图象(如图所示)可知,当25≤x≤43时z≥350,又由限价32元,得25≤x≤32,根据一次函数的性质,得y=﹣2x+100中y随x的增大而减小,∴当x=32时,每月制造成本最低.最低成本是18×(﹣2×32+100)=648(万元),
收起
(1)z=(x-18)y=(x-18)(-2x+100)
=-2x2+136x-1800,
∴z与x之间的函数解析式为z=-2x2+136x-1800;
(2)由z=350,得350=-2x2+136x-1800,
解这个方程得x1=25,x2=43
所以,销售单价定为25元或43元,
将z═-2x2+136x-1800配方,得z=-2(x-34)2...
全部展开
(1)z=(x-18)y=(x-18)(-2x+100)
=-2x2+136x-1800,
∴z与x之间的函数解析式为z=-2x2+136x-1800;
(2)由z=350,得350=-2x2+136x-1800,
解这个方程得x1=25,x2=43
所以,销售单价定为25元或43元,
将z═-2x2+136x-1800配方,得z=-2(x-34)2+512,
答;当销售单价为34元时,每月能获得最大利润,最大利润是512万元;
(3)结合(2)及函数z=-2x2+136x-1800的图象(如图所示)可知,
当25≤x≤43时z≥350,
又由限价32元,得25≤x≤32,
根据一次函数的性质,得y=-2x+100中y随x的增大而减小,
∴当x=32时,每月制造成本最低.最低成本是18×(-2×32+100)=648(万元),答:每月最低制造成本为648万元.
收起