求定积分,上限为兀/4,下限为0,x/(l+cos2x)dx

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/28 00:06:09
求定积分,上限为兀/4,下限为0,x/(l+cos2x)dx
x){YϗѦdG˙Ap t*5r*4S*lӨ_`gC:VGE Pa[P"HBC&07jTХ*SA2)%yHZ !],N.Qd5 5P` \ D0xms:O;f3a Ov/}gӾG7j_  5 A:fcu bkTjAUy9yF0wE-& Q<;PbQ

求定积分,上限为兀/4,下限为0,x/(l+cos2x)dx
求定积分,上限为兀/4,下限为0,x/(l+cos2x)dx

求定积分,上限为兀/4,下限为0,x/(l+cos2x)dx
∫[x/(1+cos2x)]dx
=∫[x/(1+2cos^2 x-1)]dx
=∫[x/(2cos^2 x)]dx
=(1/2)∫(x/cos^2 x)dx
=(1/2)∫x*sec^2 xdx
=(1/2)∫xd(tanx)
=(1/2)[x*tanx-∫tanxdx]
=(1/2)[x*tanx-∫(sinx/cosx)dx]
=(1/2)[x*tanx+∫(1/cosx)d(cosx)]
=(1/2)[x*tanx+ln|cosx|]
因为x∈[0,π/4],则cosx>0
所以:原定积分=(1/2)[x*tanx+ln(cosx)]|
=(1/2){[(π/4)*1+ln(√2/2)]-[0*0+0]}
=(1/2)*[(π/4)-(1/2)ln2]
=(π/8)-(1/4)ln2