∫(0~a)dx/{x+根号(a^2-x^2)} (a>0) 怎么算了 我是令 x=asint 后面的一些步骤就算不出了

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/23 21:45:02
∫(0~a)dx/{x+根号(a^2-x^2)} (a>0) 怎么算了 我是令 x=asint 后面的一些步骤就算不出了
xŒOJ@@i4 Hia4Ab0Y %ZJEպW%U$H7n›޼I  ŢLN~@Jzqh15"va2U Σ4OMvV ka{Ξ[B蜰׌%멻>D Bneu @J)J81.l&+8)y rtAb$VA3hNP~7+/BB$?XQAI ']gPlK0XkM΅o`!)~/ jR

∫(0~a)dx/{x+根号(a^2-x^2)} (a>0) 怎么算了 我是令 x=asint 后面的一些步骤就算不出了
∫(0~a)dx/{x+根号(a^2-x^2)} (a>0) 怎么算了
我是令 x=asint 后面的一些步骤就算不出了

∫(0~a)dx/{x+根号(a^2-x^2)} (a>0) 怎么算了 我是令 x=asint 后面的一些步骤就算不出了
x = a*sint,dx = a*cost dt,求微分而已
当x = 0,t = 0,当x = a,t = π/2
∫(0~a) dx/[x + √(a² - x²)]
= ∫(0~π/2) (a*cost)/(a*cost + a*sint) dt
= (1/2)∫(0~π/2) 2cost/(sint + cost) dt
= (1/2)∫(0~π/2) (cost + sint + cost - sint)/(cost + sint) dt
= (1/2)∫(0~π/2) dt + (1/2)∫(0~π/2) (cost - sint)/(cost + sint) dt
= (1/2)(π/2 - 0) + (1/2)∫(0~π/2) d(sint + cost)/(cost + sint)
= π/4 + (1/2)ln{ [cos(π/2) + sin(π/2)]/[cos(0) + sin(0)]
= π/4