证明lim(1+1/2)×(1+1/2²)×……×(1+1/2^2^(n-1))n→∞存在如题...注意是证明存在
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/18 14:37:20
x){ٌ\
CmC}#!5eCsk Q2 :<=FqFqyt=jcӵ3YtYE3m^ٌ!6IEԴ
l+lƋzԱUAAdmh(Ax05c([TSt7LXChJ`Ua.cɡ P=<;PD F
证明lim(1+1/2)×(1+1/2²)×……×(1+1/2^2^(n-1))n→∞存在如题...注意是证明存在
证明lim(1+1/2)×(1+1/2²)×……×(1+1/2^2^(n-1))n→∞存在
如题...注意是证明存在
证明lim(1+1/2)×(1+1/2²)×……×(1+1/2^2^(n-1))n→∞存在如题...注意是证明存在
证明:∵ lim(n->∞)[(1+1/2)(1+1/2²).(1+1/2^2^(n-1))]
=lim(n->∞)[(1-1/2)(1+1/2)(1+1/2²).(1+1/2^2^(n-1))/(1-1/2)]
=lim(n->∞)[(1-1/2^2^n)/(1-1/2)]
=(1-0)/(1-1/2)
=2
∴lim(n->∞)[(1+1/2)(1+1/2²).(1+1/2^2^(n-1))]存在.