lim x→0[(∫(x,0)(x-cost)dt)/x^3]=?

来源:学生作业帮助网 编辑:作业帮 时间:2024/12/02 08:59:42
lim x→0[(∫(x,0)(x-cost)dt)/x^3]=?
x)Ux6 ZQj M ͔M8X[{"}"UِbvaQeQQ[WY3+ڞ>Oyo߳SvTZ[kgS *a6(h }1OF 1jf$

lim x→0[(∫(x,0)(x-cost)dt)/x^3]=?
lim x→0[(∫(x,0)(x-cost)dt)/x^3]=?

lim x→0[(∫(x,0)(x-cost)dt)/x^3]=?
积分(∫(x,0)(x-cost)dt=(xt-sint)|(x,0)=x^2-sinx
再用罗比达法则 limx->0 (x^2-sinx)/x^3=limx->0(2x-cosx)/3x^2=∞