lim x→0[(∫(x,0)(x-cost)dt)/x^3]=?
来源:学生作业帮助网 编辑:作业帮 时间:2024/12/02 08:59:42
x)Ux6 ZQj
M
͔M8X[{"}"UِbvaQeQQ[WY3+ڞ>Oyo߳SvT Z[kgS*a6(h}1OF 1j f$
lim x→0[(∫(x,0)(x-cost)dt)/x^3]=?
lim x→0[(∫(x,0)(x-cost)dt)/x^3]=?
lim x→0[(∫(x,0)(x-cost)dt)/x^3]=?
积分(∫(x,0)(x-cost)dt=(xt-sint)|(x,0)=x^2-sinx
再用罗比达法则 limx->0 (x^2-sinx)/x^3=limx->0(2x-cosx)/3x^2=∞
lim (x→0)x-sinx/x
lim(x→0) xsinx
lim(x→0) tanx/x=
lim x→0 x/tanx
lim(x→0)sinx/|x|rt
lim(x →0)tan2x/x
lim(x→0)(sin5x)/x=?
lim x-sinx/x+sinxx→0
lim x→0 x/sinx=
lim(x→0)arctan(sinx/x)
lim x→0((x+ sinx)/tanx)
lim x→0(sinx)^x
lim(x→0)×(x-sin²3x)/x
X→0,lim(sin1/x+cos1/x)^x
lim(x→0)e^x-x-1/x^2
lim(x→0)[e^x-e^(2x)]/x
lim xlnx (x->+0)
lim (x->0) 3x/(sinx-x)