错位相减法(1+2)+(3+2的平方))+(5+2的3次方)+(7+2的4次方)+...(2n-1+2的n次方要分别写成两个式子、再合并因为中间有几步不会写

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/06 08:45:07
错位相减法(1+2)+(3+2的平方))+(5+2的3次方)+(7+2的4次方)+...(2n-1+2的n次方要分别写成两个式子、再合并因为中间有几步不会写
xՒn1_#ݬPqIp+X^ ȇP4VMmf)Q ,۞-VE}b־4a*Ch;`&G+mGiqu*E9 G@\Cfȏȼ+NJ]{ e :f=E}ėgP:*cfQ郓6T,UFq%eK#)iY|Ox:7m)ʃMS2"qG)TfIkbhh  ИF.ԗW'6D]o]$17UQ-HALk.u,'ٙܶa)mГ'1'lbBҚy⏉.0"KO

错位相减法(1+2)+(3+2的平方))+(5+2的3次方)+(7+2的4次方)+...(2n-1+2的n次方要分别写成两个式子、再合并因为中间有几步不会写
错位相减法(1+2)+(3+2的平方))+(5+2的3次方)+(7+2的4次方)+...(2n-1+2的n次方
要分别写成两个式子、再合并
因为中间有几步不会写

错位相减法(1+2)+(3+2的平方))+(5+2的3次方)+(7+2的4次方)+...(2n-1+2的n次方要分别写成两个式子、再合并因为中间有几步不会写
先拆项求和,(1+3+……+2n-1)+(2+2^2+……+2^n)
然后直接代公式就OK,(1+2n-1)*n/2+2(1-2^n )/(1-2)=?
如果一定要用错位相减,那么对右边来说,
Sn=2+2^2+……+2^n
2Sn=2^2+……+2^(n+1)…………这步是关键步骤,因为将Sn乘上q,相减可约去中间大量数字
相减,得到(1-2)Sn=2-2^(n+1)
所以Sn=2^(n+1)-2,
对左边来说Tn=1+3+5+……+2n-1=(1+2n-1)*n/2……n是项数,项数=(末项-首项)/公差+1
综合起来就是Sn+Tn=2^(n+1)-2+(1+2n-1)*n/2