嗯,很难,很有挑战性.寻求物理大帝 求物体的密度如图所示容器中装有两种互不相容且界限分明的液体,密度分别为1和2,将一个圆柱体放入容器中,圆柱体的密度为3 静止时圆柱体的上表面到液
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/21 02:27:44
嗯,很难,很有挑战性.寻求物理大帝 求物体的密度如图所示容器中装有两种互不相容且界限分明的液体,密度分别为1和2,将一个圆柱体放入容器中,圆柱体的密度为3 静止时圆柱体的上表面到液
嗯,很难,很有挑战性.寻求物理大帝 求物体的密度
如图所示容器中装有两种互不相容且界限分明的液体,密度分别为1和2,将一个圆柱体放入容器中,圆柱体的密度为3 静止时圆柱体的上表面到液体分界线的距离为L1,如图一所示.将第一个圆柱体取出,再将另一个形状与体积完全相同,但用不同材料制成的圆柱体放入容器中,静止时圆柱体的上表面到液体分界线的距离为L2,如图二所示,求后一个圆柱体的密度. 希望物理大帝们加加油! 谢谢!
嗯,很难,很有挑战性.寻求物理大帝 求物体的密度如图所示容器中装有两种互不相容且界限分明的液体,密度分别为1和2,将一个圆柱体放入容器中,圆柱体的密度为3 静止时圆柱体的上表面到液
设第二个物体密度为X,设物体长为L,底面积为S,由受力平衡可知,
1: p1*SL1*q+p2*S(L-LI)*q=SL*3*q
2: p1*SL2*q+p2*S(L-L2)*q=SL*X*q
P1,P2是密度,q是地心加速度,哦 天啊 忘了告诉你 改一个初一看得动懂的呵呵,失误失误,不过物理学真的挺有趣的,我大二了,不是故意写这么难的哦 我会了 ...
全部展开
设第二个物体密度为X,设物体长为L,底面积为S,由受力平衡可知,
1: p1*SL1*q+p2*S(L-LI)*q=SL*3*q
2: p1*SL2*q+p2*S(L-L2)*q=SL*X*q
P1,P2是密度,q是地心加速度,
收起
本题可等效为一种特殊情况,即分界线上方的物体用同体积的上方液体替代,分界线下方的物体用同体积下方液体替代,则此物体依然可以在原处不动。
则有M物体=M上替代液体+M下替代液体(圆柱高度H)
p3*π*R²*H=p2*(H-L1)+p1*L1】*π*R²
整理得到L=(p1-p2)L1/(p3-p2)
设另外物体密度为p4同理换成另外一个物体后依然...
全部展开
本题可等效为一种特殊情况,即分界线上方的物体用同体积的上方液体替代,分界线下方的物体用同体积下方液体替代,则此物体依然可以在原处不动。
则有M物体=M上替代液体+M下替代液体(圆柱高度H)
p3*π*R²*H=p2*(H-L1)+p1*L1】*π*R²
整理得到L=(p1-p2)L1/(p3-p2)
设另外物体密度为p4同理换成另外一个物体后依然有
L=(p1-p2)L2/(p4-p2)
两个圆柱体高度一样,两个式子联立求解得到
p4=(p3-p2)L2+p2L1】/L1
收起
设圆柱体的高度为h,底面积为s,圆柱体的浮力=(下表面压强-上表面压强)×底面积=重力。
第一个圆柱体:
下表面压强-上表面压强=L1ρ1g+(h-L1)ρ2g
浮力=s×(hρ2+L1ρ1-L1ρ2)g
浮力又等于重力,浮力=shρ3g
所以s×(hρ2+L1ρ1-L1ρ2)g=shρ3g
求得h=L1(ρ1-ρ2)/(ρ3-ρ2)
全部展开
设圆柱体的高度为h,底面积为s,圆柱体的浮力=(下表面压强-上表面压强)×底面积=重力。
第一个圆柱体:
下表面压强-上表面压强=L1ρ1g+(h-L1)ρ2g
浮力=s×(hρ2+L1ρ1-L1ρ2)g
浮力又等于重力,浮力=shρ3g
所以s×(hρ2+L1ρ1-L1ρ2)g=shρ3g
求得h=L1(ρ1-ρ2)/(ρ3-ρ2)
第二个圆柱体,同理。
s×(hρ2+L2ρ1-L2ρ2)g=shρ4g
把前面求得的h代入上式,求得
ρ4=ρ2+L2(ρ1-ρ2)/h=ρ2+L2(ρ1-ρ2)×(ρ3-ρ2)÷[L1(ρ1-ρ2)]
= ρ2+L2(ρ3-ρ2)/L1
收起