求一元二次方程解法

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/23 16:31:23
求一元二次方程解法
xX]oG+TT:?$J%FQJ1vm9-%م'B̝]XQ%?xfs3w2|xl[v:龻Nˍ_'/w;U_wԵ߹˗}6w`g w;vge:NKFkA "ռ5dحcKcjڬ-wvk`ƘNYL 0f</pz_"Ǚ TOƏ3E}vW4y86P4h tUweeBvpʟnYGugR5X]R.rF*(/>d -I|Q^ EҞ&TEEW'k1^`Ȏ?{myf9MjN>RKɬQ0Z!,p5 }ь?җY9JT4u5ke♤ida!TR? {)݈Z<{<ݷ~eX @ hX#:~/NFjg|]| [~#%[@5)(i EcN$V 5)sMws`YNIQ3@Ubf2XDZrɫhR"p,.,_j>-b6` HB„t pީ_J Yށč .yOgXF9K5 -W;-RR^w;3>"r P/W!(TT 6Cre(:2OH׼hI ҈Ҏl-YtwF+ÿ/ѿdz Nv2>d~gY6:N6rK޾!]u=tnرW69#t`āPk1HxNxE^{D'  ֬bGD4snn& o:u b͈>(f͆mz*ud=Rv֥<]ni- @xbaF+W+OKF8<2c.Fi޹hԽG

求一元二次方程解法
求一元二次方程解法

求一元二次方程解法
解一元二次方程的基本思想方法是通过“降次”将它化为两个一元一次方程.一元二次方程有四种解法:  1、直接开平方法;2、配方法;3、公式法;4、因式分解法.
1、直接开平方法:  直接开平方法就是用直接开平方求解一元二次方程的方法.用直接开平方法解形如(x-m)^2;=n (n≥0)的 方程,其解为x=±√n+m .
例1.解方程(1)(3x+1)^2;=7 (2)9x^2;-24x+16=11
分析:(1)此方程显然用直接开平方法好做,(2)方程左边是完全平方式(3x-4)^2;,右边=11>0,所以此方程也可用直接开平方法解.
(3x+1)^2=7
∴(3x+1)^2=7
∴3x+1=±√7(注意不要丢解符号)
∴x= ﹙﹣1±√7﹚/3
∴原方程的解为x1=﹙√7﹣1﹚/3,x2=﹙﹣√7-1﹚/3
9x^2-24x+16=11
∴(3x-4)^2=11
∴3x-4=±√11
∴x=﹙ 4±√11﹚/3
∴原方程的解为x1=﹙4﹢√11﹚/3,x2= ﹙4﹣√11﹚/3
2.配方法:用配方法解方程ax^2+bx+c=0 (a≠0)   先将常数c移到方程右边:ax^2+bx=-c   将二次项系数化为1:x^2+b/ax=- c/a   方程两边分别加上一次项系数的一半的平方:x^2+b/ax+( b/2a)^2=- c/a+( b/2a)^2;   方程左边成为一个完全平方式:(x+b/2a )2= -c/a﹢﹙b/2a﹚²   当b²-4ac≥0时,x+b/2a =±√﹙﹣c/a﹚﹢﹙b/2a﹚²   ∴x=﹛﹣b±[√﹙b²﹣4ac﹚]﹜/2a(这就是求根公式)
例2.用配方法解方程 3x²-4x-2=0
将常数项移到方程右边 3x²-4x=2   将二次项系数化为1:x²-﹙4/3﹚x=   方程两边都加上一次项系数一半的平方:x²-﹙4/3﹚x+( 4/6)²=?+(4/6 )²   配方:(x-4/6)²= +(4/6 )²   直接开平方得:x-4/6=± √[?+(4/6 )² ]   ∴x= 4/6± √[?+(4/6 )² ]   ∴原方程的解为x?=4/6﹢√﹙10/6﹚,=4/6﹣√﹙10/6﹚ .  3.公式法:把一元二次方程化成一般形式,然后计算判别式△=b²-4ac的值,当b²-4ac≥0时,把各项系数a,b,c的值代入求根公式x=[-b±√(b²-4ac)]/(2a) ,(b²-4ac≥0)就可得到方程的根.  例3.用公式法解方程 2x²-8x=-5 将方程化为一般形式:2x²-8x+5=0   ∴a=2,b=-8,c=5   b²-4ac=(-8)²-4×2×5=64-40=24>0   ∴x=[(-b±√(b²-4ac)]/(2a)   ∴原方程的解为x?=,= .  4.因式分解法:把方程变形为一边是零,把另一边的二次三项式分解成两个一次因式的积的形式,让两个一次因式分别等于零,得到两个一元一次方程,解这两个一元一次方程所得到的根,就是原方程的两个根.这种解一元二次方程的方法叫做因式分解法.  例4.用因式分解法解下列方程:  (1) (x+3)(x-6)=-8 (2) 2x²+3x=0   (3) 6x²+5x-50=0 (选学) (4)x2-2( + )x+4=0 (选学) (x+3)(x-6)=-8 化简整理得   x2-3x-10=0 (方程左边为二次三项式,右边为零)   (x-5)(x+2)=0 (方程左边分解因式)   ∴x-5=0或x+2=0 (转化成两个一元一次方程)   ∴x1=5,x2=-2是原方程的解.2x2+3x=0   x(2x+3)=0 (用提公因式法将方程左边分解因式)   ∴x=0或2x+3=0 (转化成两个一元一次方程)   ∴x1=0,x2=-是原方程的解.  注意:有些同学做这种题目时容易丢掉x=0这个解,应记住一元二次方程有两个解.6x2+5x-50=0   (2x-5)(3x+10)=0 (十字相乘分解因式时要特别注意符号不要出错)   ∴2x-5=0或3x+10=0   ∴x1=,x2=- 是原方程的解.x2-2(+ )x+4 =0 (∵4 可分解为2 ·2 ,∴此题可用因式分解法)   (x-2)(x-2 )=0   ∴x1=2 ,x2=2是原方程的解.  小结:  一般解一元二次方程,最常用的方法还是因式分解法,在应用因式分解法时,一般要先将方程写成一般形式,同时应使二次项系数化为正数.  直接开平方法是最基本的方法.  公式法和配方法是最重要的方法.公式法适用于任何一元二次方程(有人称之为万能法),在使用公式法时,一定要把原方程化成一般形式,以便确定系数,而且在用公式前应先计算判别式的值,以便判断方程是否有解.  配方法是推导公式的工具,掌握公式法后就可以直接用公式法解一元二次方程了,所以一般不用配方法   解一元二次方程.但是,配方法在学习其他数学知识时有广泛的应用,是初中要求掌握的三种重要的数学方法之一,一定要掌握好.(三种重要的数学方法:换元法,配方法,待定系数法).

配方法、公式法、因式分解法