若直线y=x-b与曲线x=[根号(1-y²)]+2有两个不同的公共点,则实数b的取值范围()

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/30 01:44:58
若直线y=x-b与曲线x=[根号(1-y²)]+2有两个不同的公共点,则实数b的取值范围()
xRn@*(Ux~l/*|'vmhQZ(RUM@BgnT; m"]u{{𛣍ONjq8~т9>O!/^qtvBZѻ8O6ӽe|NVyx~,6n_0/㉲l_'پ(,CeM9r ATToq49Y{7ٙ v ݼ E\Yr;,5vZwj=+sՖﺓ$b $̜UcLuh5TM(C+V9cLTZHv˲k7|A>E͸hc.B`0E1Q4Ff>/!WpdcP

若直线y=x-b与曲线x=[根号(1-y²)]+2有两个不同的公共点,则实数b的取值范围()
若直线y=x-b与曲线x=[根号(1-y²)]+2有两个不同的公共点,则实数b的取值范围()

若直线y=x-b与曲线x=[根号(1-y²)]+2有两个不同的公共点,则实数b的取值范围()
x=[√(1-y²)]+2
x-2=√(1-y²)
(x-2)²+y²=1
∴曲线是以(2,0),半径为1的右半圆

有2个交点
∴y=x-b过(3,0)
b=3
当y=x-b与半圆在下面相切时
|2-0-b|/√2=1
∴b=2+√2
综上b范围是[3,2+√2)