已知二次函数y=3x`2-12x+13,函数值y的最小值是()
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/20 12:21:56
已知二次函数y=3x`2-12x+13,函数值y的最小值是()
已知二次函数y=3x`2-12x+13,函数值y的最小值是()
已知二次函数y=3x`2-12x+13,函数值y的最小值是()
y=3(x²-4x+4)+1
=3(x-2)²+1
当x=2时有最小值y=1
y=3(X²-4x+4)+1
=3(x-2)²+1
y的最小值是1
是1
y=3(x^2-4x+4)+1
=3(x-2)^2+1
当x=2时取最小值
在x=2时,取到最小值1
答案:1
用公式代一下
方法一、(配方法)y=3x`2-12x+13=3(x-2)^2+1,该二次函数开口向上,则当x=2时有y的最小值为1.
方法二、(导数法)y'=6x-12,令y'=0,求得x=2,当x<2时,y'<0,当x>2时,y'>0,由此可知二次函数在2的左边单调递减,在2的右边单调递增,因此当x=2时,y有最小值为y=3×2^2-12×2+13=1.
说明:导数法用到了高中数...
全部展开
方法一、(配方法)y=3x`2-12x+13=3(x-2)^2+1,该二次函数开口向上,则当x=2时有y的最小值为1.
方法二、(导数法)y'=6x-12,令y'=0,求得x=2,当x<2时,y'<0,当x>2时,y'>0,由此可知二次函数在2的左边单调递减,在2的右边单调递增,因此当x=2时,y有最小值为y=3×2^2-12×2+13=1.
说明:导数法用到了高中数学知识,用导数求解二次函数极值问题相当简单,如果还没有学过导数,不妨采用配方法,也能求出。
收起
最小值为1。
y=3x`2-12x+13=3(x-2)`2+1
因为(x-2)`2>=0,所以当(x-2)`2=0的时候,函数取得最小值1。