求积分,被积函数是ln[(x+√(x²+1))/(x+√(x²-1))],

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/19 19:25:45
求积分,被积函数是ln[(x+√(x²+1))/(x+√(x²-1))],
xN@_D!CF %!D7] h$]\ڷpZP,\kߜV,P/&ֵSr5 7f(ЍD&I%r~8[dᆉm}z%`jl+6'爴{l:2~r'<QUsUj_C 鎨Q/~jn^Y%O-b%/qNd!23!kѭ-kBvUǬe[K,4@.w4*­C١g@Xa3K[XE=\ǓF-3d)tle4+ D&Τ\

求积分,被积函数是ln[(x+√(x²+1))/(x+√(x²-1))],
求积分,被积函数是ln[(x+√(x²+1))/(x+√(x²-1))],

求积分,被积函数是ln[(x+√(x²+1))/(x+√(x²-1))],
其实这个可以直接分部积分,但后边求导起来比较复杂.那就间接分部积分,不过结果是一样的
∫ln(x+√(x²+1)-ln(x+√(x²-1))dx
=∫ln(x+√(x²+1)dx-∫ln(x+√(x²-1))dx
=xln(x+√(x²+1)-∫xd[ln(x+√(x²+1)]-xln(x+√(x²-1))+∫xd[ln(x+√(x²-1))] //这里的求导仔细点就可以了,我相信你会求的.
=x[ln(x+√(x²+1)-ln(x+√(x²-1))]-∫x/√(x^2+1)dx+∫x/√(x^2-1) dx
=xln[(x+√(x²+1))/(x+√(x²-1))]+√(x^2-1)-√(x^2+1)+C

原式=ln[(x+√(x²+1)]-ln[x+√(x²-1))]原式'=[1+2x/√(x²+1)]/[(x+√(x²+1)]-[1+2x/√(x²-1)]/[(x+√(x²-1)]