在数列{an}中,a1=-56,an+1=an+12(n大于等于1),求它的前多少项和最小,最小值多少

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/30 00:38:53
在数列{an}中,a1=-56,an+1=an+12(n大于等于1),求它的前多少项和最小,最小值多少
xSN@-%O7a=!4&BByEǐ+~BhH v9;sC0-YM3[XTEZ}qÀU sAb)Z-vfZyIViJ/|/t|"! U[mdi*S3I i+n 9h s4DM#_b^ z2aM{({#6qwd/C P">%Ŧ?!FHB,H<yqPXvg+4e`p.D9ߣLso| 9}*et0WV`"reVz+]MJQ%o93DY@Fx}zY,5Ff<d7#n{k& 

在数列{an}中,a1=-56,an+1=an+12(n大于等于1),求它的前多少项和最小,最小值多少
在数列{an}中,a1=-56,an+1=an+12(n大于等于1),求它的前多少项和最小,最小值多少

在数列{an}中,a1=-56,an+1=an+12(n大于等于1),求它的前多少项和最小,最小值多少
an+1=an+12(n≥1)
即:
an+1-an=12(n≥1)
说明{an}是一个首项为a1=-56,公差为d=12的等差数列
所以:
an=a1+(n-1)d=-56+12(n-1)
前n项和为:
Sn=na1+d*n(n-1)/2=-56n+6n(n-1)=6n^2-62n
n=62/(2*6)=31/6,有最小值
因为n为整数
所以
n=5或6

当n=5时,
Sn=6*25-62*5=-160

当n=6时,
Sn=6*36-62*6=-156
显然当n=5时,有最小值为-160

a1=-56,an+1=an+12(n大于等于1),:
an+1-an=12(n≥1)
说明{an}是一个首项为a1=-56,公差为d=12的等差数列
所以:
an=a1+(n-1)d=-56+12(n-1)
前n项和为:
Sn=na1+d*n(n-1)/2=-56n+6n(n-1)=6n^2-62n
n=62/(2*6)=31/6,有最小值...

全部展开

a1=-56,an+1=an+12(n大于等于1),:
an+1-an=12(n≥1)
说明{an}是一个首项为a1=-56,公差为d=12的等差数列
所以:
an=a1+(n-1)d=-56+12(n-1)
前n项和为:
Sn=na1+d*n(n-1)/2=-56n+6n(n-1)=6n^2-62n
n=62/(2*6)=31/6,有最小值
因为n为整数
所以
n=5或6

当n=5时,
Sn=6*25-62*5=-160

当n=6时,
Sn=6*36-62*6=-156
显然当n=5时,有最小值为-160

收起