怎么证明:(1+X)^n>1+nX这个式子?
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/06 03:29:20
xSn@Tƀ}oDj=pBe&M#.FI ATĉ ֻ6'~Q5=%μy3ovT$3?$Xǽu븾k6nr7&qLJ/_=PJYD߀쬑 II-F*oVTIip42TQl$P9ؖ+ce(|"{8]ec*0v$JY!ViAC ɝGDb e!,iFk^(? $ y#i.)Vq7HZܲ͐VY.*kEM7E>iNr)2(Dvi#^ɐ,NCF8q=\aꪁUl3Dգ;2]۟nr7(@Hb
?>vmr,ja
怎么证明:(1+X)^n>1+nX这个式子?
怎么证明:(1+X)^n>1+nX这个式子?
怎么证明:(1+X)^n>1+nX这个式子?
对(1+X)^n进行二项展开,等于x^n+nx+……+1,大于1+nX
二项展开的通式:
(x + a)^n = x^n + nax^(n-1) + n(n-1)a^2x^(n-2)/2 + ...+ n!/[k!(n-k)!]a^kx^(n-k) + ...+ nxa^(n-1) + a^n
要求x>0才行,否则不一定
令 f(x)= (1+x)^n -nx -1
所以f'(x)= n(1+x)^(n-1)-n = n((1+x)^(n-1) - 1 )>0
所以f(x)在x>0时,单增
所以 f(x)>f(0) = 1-0-1=0
即:(1+X)^n>1+nX
在n>=2,x>0时成立
用数学归纳法
n=2时
(1+x)^2=1+2x+x^2>1+2x
假设n=k成立,即(1+x)^2>1+kx
则,n=k+1时,有
(1+x)^(k+1)
=(1+x)^k*(1+x)>(1+kx)(1+x)=1+kx^2+(k+1)x>1+(k+1)x
对x>0时,n>=2成立
一种方法是用用排列组合展开
每一项都是正的,故省略前面只留下后面两项原式大于nX+1
也可用数学归纳法:
当n=1是验证成立,假设当n=k时成立,可推出n=k+1也成立,故成立。
字数限制不详细叙述
怎么证明:(1+X)^n>1+nX这个式子?
这个不等式,不用归纳法怎么证明?(1-x^2)^n≥1-nx^2 (0≤x≤1)
证明(1+x)^n>1+nx,(x>0,n>1)
设x>-2,n∈N*,试证明(1+x)∧n≥1+nx
x的n次方的导数的nx的n-1次方怎么证明的!.
用导数定义证明:(x^n)'=nx^(n-1)
设x>-2,n∈N*,试证明(1+x)∧n≥1+nx(用导数的知识)
证明:当x>=0时,nx^(n-1)-(n-1)x^n1)
(1+x)∧(1/n)-1~1/nx证明求解
对任何自然数,x^n-nx+(n-1)能被(x-1)^2整除,用数学归纳法证明这个命题
证明:当X→0时,(1+X)^(n/2)-1~1/nX
【证明】若f(x)=x^n 则f'(x)=nx^(n-1)【证明】若f(x)=x^n 则f'(x)=nx^(n-1)
用归纳法证明(1+x)^n 大于等于1+nx
设x>-2,n∈N*,试证明(1+x)∧n≥1+nx(用导数知识)
cos(n+1)x=cos(nx)cosx-sin(nx)sinx这个式子是怎推出来的?
用导数定义证明:(x^-n)'=-nx^(n-1) 注意是负n次方!谢谢
证明:当x>=0时 ,nx^(n-1)-(n-1)x^n1)
nx(1-x)^n的导数怎么求