已知数列{an}满足a1=3,a(n+1)=an^2-nan+λ(n∈N*,λ为实数)(1)若an≥2n恒成立,求λ的取值范围(2)若λ=-2,求证1/(a1-2)+1/(a2-2)+……+1/(an-2)<2
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/30 12:19:07
已知数列{an}满足a1=3,a(n+1)=an^2-nan+λ(n∈N*,λ为实数)(1)若an≥2n恒成立,求λ的取值范围(2)若λ=-2,求证1/(a1-2)+1/(a2-2)+……+1/(an-2)<2
已知数列{an}满足a1=3,a(n+1)=an^2-nan+λ(n∈N*,λ为实数)
(1)若an≥2n恒成立,求λ的取值范围
(2)若λ=-2,求证1/(a1-2)+1/(a2-2)+……+1/(an-2)<2
已知数列{an}满足a1=3,a(n+1)=an^2-nan+λ(n∈N*,λ为实数)(1)若an≥2n恒成立,求λ的取值范围(2)若λ=-2,求证1/(a1-2)+1/(a2-2)+……+1/(an-2)<2
(1)a2=a1^2-a1+λ =6+λ>=4 λ>=-2
a3=a2^2-2a2+λ=(6+λ)^2-2(6+λ)+λ=36+12λ+λ^2-12-2λ+λ=λ^2+11λ+24>=6
λ^2+11λ+18>=0 (λ+2)(λ+9)>=0 得λ>=-2 或λ=2 得
a(n+1)/(n+1) =(an^2-nan+λ)/(n+1)>=2
an^2-nan+λ>=2n+2
an^2-nan+λ-2n-2>=0
λ>=-an^2+nan+2n+2>=-4n^2+2n^2+2n+2=-2n^2+2n+2=-2(n^2-n-1) (n>=2时n^2-n-1>1 -2(n^2-n-1=2n 时-an^2+nan+2n+2是减函数)
综上所述可得λ>=-2
(2)λ=-2 a(n+1)=an^2-nan-2
a2=6-2=4 a3=16-2*4-2=8 a4=64-3*8-2=64-26=48>2^4
.可以用数学归纳法证明an-2>2^n (n>=4) (事实上可以利用(1) an>=2n)
所以1/(a1-2)+1/(a2-2) +...+1/(an-2)
第一问就令an=2n带入, λ应该大于2
第二问用数学归纳法试试,或者试试把表达式解出来
1.若an≥2n恒成立 ,则有a(n+1)=an^2-nan+λ》=2(n+1)也成立
a(n+1)=an^2-nan+λ》=2(n+1)又因为 an》=2n 此函数在定义域上为递增函数,an=2n时成立,则题设恒成立,将an=2n代入方程
得 (2n)^2-2n^2+入-2n-2>=0 2n^2-2n-2+入>=0
又n为正整数,在此区间 2n^2-2n-2+入...
全部展开
1.若an≥2n恒成立 ,则有a(n+1)=an^2-nan+λ》=2(n+1)也成立
a(n+1)=an^2-nan+λ》=2(n+1)又因为 an》=2n 此函数在定义域上为递增函数,an=2n时成立,则题设恒成立,将an=2n代入方程
得 (2n)^2-2n^2+入-2n-2>=0 2n^2-2n-2+入>=0
又n为正整数,在此区间 2n^2-2n-2+入递增 当n=1时 取得入的最小值 入=-2
所以只要 入>=-2 则 an>=2n
2.若入=-2,则an>=2n
所以1/(a1-2)+1/(a2-2)+……+1/(an-2)<=1/1+1/2+1/4+...+1/2n-2<2
收起