求有关高一函数定义域试题

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/18 12:28:31
求有关高一函数定义域试题
xXRG^첌]$$qQ)elR$Yejd!12 K {F+~!vF# \qVY4}w䟞/E!'݃5xs+9䛛3;oiTnTلWbJǨ~0u1i%ant꬛{i7,z3]6I6s/b p|y|g\[9Z5˦nTp:<4;"A6Cmo30E<||41KA$&q8+ecɢgVin~x !fDm" >?~Û/$ *|c:¤&h7*d337Ԏb3 s$9<_|ln^eD]KaR1?Ed_f2V\/9Z O@ V 'DjVe"Y,?=Jʰm%]FӨm) {Hm*ϼddD3sٌ~=P.wH+D ` ؇E$5 J֤,M)?f9i4΍B1]P2gPRSq&Y;z 'ᑛ, "!(S(\6N߀CDOC^!־1I$/<`I B>ĂJaJQEZ_pՅvR MZVv6(N!E)5jR3'nH(hΗg6#(\ǎ94bU&a㩺d ':twX[g +P!NT}@% sa*>LtPfŝD Q+3ڡcx:鳮ZC,+GIK YuUCQW?5a㵓nq:BqR](Đ^pc icۣEA ,ٰd7D!a4x s~Z"@QBg#:xt*7@QחMZq \cgW,X&>U(IET^qu0Ց$q-J9=2¾ݓlصJX*u@ J_?oTO>w_N5ZRuz{OĻH  7w ;斤@m0`05_|#r3/7-IVzL0Qar73M(iU<Mf iRu ]<[M8@GXCaXs618,DDtQ'䀓>QNӴB[ hU9|r^T[QxiBû؈楬vngԌEyKK] 54N!3O4lI0X亮G$9SQ,z-v6 M$E밚 m;eUڲ'cw/kI;_úhyo~OʇQ;4(n۟†M!K. 0Q&3B:̊f{Aw>MHxOHy}o SW3U PL/pYǯuNE_\j"c

求有关高一函数定义域试题
求有关高一函数定义域试题

求有关高一函数定义域试题
主要是理解它就行了,个人感觉是你去做几道这种类型的题,然后找个会的同学去和你一起分析下,有时候你糊涂了,看再多资料会越来越迷茫,同学之间的思维都比较接近,这样你容易接受下

1.集合运算中一定要分清代表元的含义。
[举例]已知集合P={y|y=x2,x∈R}, Q={y|y=2x,x∈R}求P∩Q。
解析:集合P、Q均为函数值域(不要误以为是函数图象,{(x,y)| y=x2,x∈R}才表示函数图象),P=[0,+ ,Q=(0,+ ,P∩Q=Q。
[提高]A={x|y=3x+1,y∈Z},B={y|y=3x+1,x∈Z},求A∩B。

全部展开

1.集合运算中一定要分清代表元的含义。
[举例]已知集合P={y|y=x2,x∈R}, Q={y|y=2x,x∈R}求P∩Q。
解析:集合P、Q均为函数值域(不要误以为是函数图象,{(x,y)| y=x2,x∈R}才表示函数图象),P=[0,+ ,Q=(0,+ ,P∩Q=Q。
[提高]A={x|y=3x+1,y∈Z},B={y|y=3x+1,x∈Z},求A∩B。
2.空集是任何集合的子集,空集是任何非空集合的真子集。
[举例]若A={x|x2解析:当a>0时,集A=(- , ),要使A∩B=Φ,则 ≤2,得0当a≤0时,A=Φ,此时A∩B=Φ,综上:a≤4(A=Φ的情况很容易疏漏!)
[巩固]若A={x∣ax=1},B={x∣x2=1}且B∩A=A,求a的所有可能的值的集合。
[关注]A∩B=A等价于A B
3.充要条件可利用集合包含思想判定:若A B,则A是B充分条件;若A B,则A是B必要条件;若A B且A B即A=B,则A是B充要条件。换言之:由A B则称A是B的充分条件,此时B是A的必要条件;由B A则称B是A的充分条件,此时A是B的必要条件。有时利用原命题与逆否命题等价,“逆命题”与“否命题”等价转换去判定也很方便。
充要条件的问题要十分细心地去辨析:“哪个命题”是“哪个命题”的充分(必要)条件;注意区分:“甲是乙的充分条件(甲 乙)”与“甲的充分条件是乙(乙 甲)”。
[举例] 若非空集合 ,则“ 或 ”是“ ”的 ( )
(A)充分非必要条件 (B)必要非充分条件 (C)充要条件 (D)既非充分又非必要条件
解析:命题“ 或 ”等价于“ ∈ ”,显然 是 的真子集,
∴“ 或 ” 是“ ”的必要不充分条件。
[巩固]已知直线 、 和平面 ,则 ‖ 的一个必要但不充分条件是 ( )
( ) ‖ 且 ‖ ( ) 且
( ) 、 与 成等角 ( ) ‖ 且
4.命题“A或B”真当且仅当“A、B中至少要一个真”; 命题“A或B”假当且仅当“A、B全假”。命题“A且B”真当且仅当“A、B全真”;命题“A且B”假当且仅当“A、B中至少要一个假”。“P真”则“非P假”,“P假”则“非P真”;注意:“非P”和“P的否命题”是不同的,“非P”只否定命题的结论,“P的否命题”则是分别否定命题的条件和结论;如P:两直线平行内错角相等,“非P”:两直线平行内错角不相等,“P的否命题”:两直线不平行内错角不相等。
[举例] 已知 函数f(x)=lg(ax2-x+ a)的定义域为R; 不等式 <1+ax对一切正实数均成立。若p或q为真,p且q为假,则实数a的取值范围是_____________。
解析:f(x) 的定义域为R ax2-x+ a >0对一切实数x恒成立
a>2,即命题p:a>2; 不等式 <1+ax对一切正实数均成立 对一切正实数x恒成立,记 ,则 ,令 , = ,可见函数 无最大值,它的极大值为1,∴a≥1,即命题q:a≥1;而p或q为真,p且q为假即 p、q一真一假;若p真 q假,则a>2且a<1,这不可能,舍去;若p假 q真,则a≤2且a≥1即1≤a≤2;
[巩固1]设 或 , 或 ,则 是 的( )
(A)充分不必要条件 (B)必要不充分条件
(C)充要条件 (D)既不充分也不必要条件
[巩固2]若“¬p或¬q”是真命题,则---------------------------------------------------------( )
(A)“p或q”是真命题 (B)“¬p且¬q”是真命题
(C)“p或q”是假命题 (D)“p且 q”是假命题
简答
2. [巩固]{-1,1,0},3. [举例]B,[巩固]C, 4. [巩固1]A,[巩固2]D,

收起

试题不用做多少,多看看课本就能学好