求证|sinx-siny|=|2sin[(x-y)/2]cos[(x+y)/2]|

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/25 03:57:20
求证|sinx-siny|=|2sin[(x-y)/2]cos[(x+y)/2]|
x){ƚ̼ ] QYc[c5*t+5blm0&HDv6BH(BBH(Q AF Dl4$S8(lhna $K#TcF7aPWBvU̯@5hT)mT+bqj6%(.<76yvk6

求证|sinx-siny|=|2sin[(x-y)/2]cos[(x+y)/2]|
求证|sinx-siny|=|2sin[(x-y)/2]cos[(x+y)/2]|

求证|sinx-siny|=|2sin[(x-y)/2]cos[(x+y)/2]|
|2sin[(x-y)/2]cos[(x+y)/2]|
=I2[sin(x/2)cos(y/2)-sin(y/2)cos(x/2)][cos(x/2)cos(y/2)-sin(x/2)(sin(y/2)]
=I2[sin(x/2)cos(x/2)cos²(y/2)-sin²(x/2)sin(y/2)cos(y/2)-cos²(x/2)sin(y/2)cos(y/2)+sin(x/2)cos(x/2)sin²(y/2)]I
=Isinxcos²(y/2)-sin²(x/2)siny-cos²(x/2)siny+sinxsin²(y/2)I
=Isinx[sin²(y/2)+cos²(y/2)]-siny[sin²(x/2)+cos²(x/2)]I
=Isinx-sinyI
得证