矩阵A:m*n,B:n*s,证明 R(A)+R(B)

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/28 02:28:30
矩阵A:m*n,B:n*s,证明 R(A)+R(B)
xN@_- I1na{B,j *b D}әL l:s[&=͔wޛv(2FD9a",9#lgݛ3zP'xTYSn%m7@ޛ3.(#($c(Khʪrwה1qsM0Qs5CiO[ev>yR"(OFYoqInpO~'..iJ"6(j+M.V," Y,ܮl[hx$SfU -=Ś&ҚZvZ3*Qw3A6ʅ͕aC(L/:ϥܨj},NEK.0v 6HCszaƤ]S {L5

矩阵A:m*n,B:n*s,证明 R(A)+R(B)
矩阵A:m*n,B:n*s,证明 R(A)+R(B)

矩阵A:m*n,B:n*s,证明 R(A)+R(B)
先约定一下记号.
以下用En表示n阶单位阵,用[X,Y;Z,W]表示分块矩阵:
X Y
Z W
考虑(n+m)*(n+s)分块矩阵C = [En,B;A,0].
可以证明:A,B各自的列极大线性无关组的所在列是线性无关的,因此r(C) ≥ r(A)+r(B).
取(n+m)*(n+m)分块矩阵P = [En,0;-A,Em],可验证PC = [En,B;0,-AB].
再取(n+s)*(n+s)分块矩阵Q = [En,-B;0,Es],可验证PCQ = [En,0;0,-AB].
而易得|P| = 1,|Q| = 1 (P,Q分别为下三角阵和上三角阵),故P,Q均可逆.
故r(C) = r(PCQ) = r(En)+r(-AB) = n+r(AB).
即有r(A)+r(B) ≤ n+r(AB).