A为n阶方阵,A^2+A-4E=O,证明A与A-E都是可逆矩阵,并写出A^-1及(A-E)^-1

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/25 00:21:02
A为n阶方阵,A^2+A-4E=O,证明A与A-E都是可逆矩阵,并写出A^-1及(A-E)^-1
x)s|cW۞MrV8#mG]W[9꺾ll_6=mOf>mkBM &H6p\[WGQUob >%:tPe8M5r2r PL!}#4t]!<F 1h>

A为n阶方阵,A^2+A-4E=O,证明A与A-E都是可逆矩阵,并写出A^-1及(A-E)^-1
A为n阶方阵,A^2+A-4E=O,证明A与A-E都是可逆矩阵,并写出A^-1及(A-E)^-1

A为n阶方阵,A^2+A-4E=O,证明A与A-E都是可逆矩阵,并写出A^-1及(A-E)^-1
A^2+A-4E=O
A^2+A=4E
A(A+E)=4E
A(A+E)/4=E
因此,A可逆,且A^-1=(A+E)/4
A^2+A-4E=O
A^2+A-2E=2E
(A-E)(A+2E)=2E
(A-E)(A+2E)/2=E
因此,A-E可逆,且(A-E)^-1=(A+2E)/