设方阵A满足A^2-A-2E=0,证明:A及A+2E都可逆,并求A的逆矩阵及(A+2E)的逆矩阵
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/06 04:12:49
x){n߳i;_l6;:XlF=w9jlˆ6;=|V|J~{:@DI*ҧ5v6tϳ{zf͓
.}6~ z9eJOو`+DgÓK4u]5lQD';vAU2B$D'DF6hٱ@c8#}<;hpڀ9Og/ *x %
@`i!`&_4 `u.,+ Vfj
设方阵A满足A^2-A-2E=0,证明:A及A+2E都可逆,并求A的逆矩阵及(A+2E)的逆矩阵
设方阵A满足A^2-A-2E=0,证明:A及A+2E都可逆,并求A的逆矩阵及(A+2E)的逆矩阵
设方阵A满足A^2-A-2E=0,证明:A及A+2E都可逆,并求A的逆矩阵及(A+2E)的逆矩阵
楼上第一步有小小错误
由A^2-A-2E=0知A^2-A=2E
所以A*(A-E)/2=E
所以A可逆,逆为(A-E)/2
由A^2-A-2E=0知A^2=A+2E
由A可逆知A^2可逆
所以A+2E可逆,逆为[(A-E)/2]^2=(A-E)^2/4
因为A^2-A=E
所以A*(A-E)=E
所以A可逆,逆为 A-E
因为
A^2=A+2E
而A可逆,
所以A+2E可逆,逆为 (A-E)^2
设方阵A满足A^2+A-E=0,证明A-E可逆并求出A-E
设方阵A满足A^3-A^2+2A-E=0 ,证明: A及A-E均可逆.
设n阶方阵A满足A*A-A-2E=0,证明A和E-A可逆
线性代数 设n阶方阵A满足A^2=E,|A+E |≠0,证明A=E
设方阵A满足A^2-A-2E=0 证明A及A+2E都可逆
设方阵A满足A*A-A-2E=0,证明矩阵A+E可逆,并求它.
设方阵A满足A²+3A-2E=0,证明方阵A+3E可逆,并求A+3E的逆矩阵.
设方阵A满足2A^2+A-3E=0证明3E-A可逆
线性代数中,设方阵A满足A^2-2A+3E=0,如何证明 A-3E可逆.
设n阶方阵A满足A^2-A-2E=0怎么证明A-E可逆?
设方阵A满足等式A^2-3A-10E=0,证明A-4E可逆.
设方阵A满足A^2-A-E=0 证明A可逆 并求A^-1
设N阶方阵满足A^2-2A-E=0,证明A+E可逆,并求其逆
设方阵A满足A*A-A-2E=0,证明A和A+2E都可逆,并求1/A和1/(A+2E).
设n阶方阵A满足A^2=E,证明r(A-E)=n-r(A+E)
设A为N阶方阵,满足A^K=0,证明E-A可逆,并且(E-A)^-1=E+A+A^2+...+A^K-1
设方阵A满足矩阵方程A^2+A-7E=0,证明A,A+E,A-2E均可逆,并求其逆
设方阵满足A^2-4A-E=0,证明A及4A+E均可逆,并求A及4A+E的逆矩阵