设A为n阶方阵,满足A^2=3A,证明:(1)4E-A可逆;(2)如果A不等于0,证明3E-A不可逆.

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/06 01:49:20
设A为n阶方阵,满足A^2=3A,证明:(1)4E-A可逆;(2)如果A不等于0,证明3E-A不可逆.
xPKn0II!Fr E XQ!|erIV,5='Ihz8 "%=}7LJݛ$=Jַ]ڕ,W],m?=  %H%~mn]+O Nu,Zn@R+RCG ȂG-G~Yc|mxzSs [EhaI"YRL0Fdlfax-\ &

设A为n阶方阵,满足A^2=3A,证明:(1)4E-A可逆;(2)如果A不等于0,证明3E-A不可逆.
设A为n阶方阵,满足A^2=3A,证明:(1)4E-A可逆;(2)如果A不等于0,证明3E-A不可逆.

设A为n阶方阵,满足A^2=3A,证明:(1)4E-A可逆;(2)如果A不等于0,证明3E-A不可逆.
(4E-A)(-E-A)=-4E+A-4A+A^2=-4E,因此4E-A可逆,其逆为(E+A)/4.
反证法:若3E-A可逆,则条件为(3E-A)A=0,左乘3E-A的逆得A=0,矛盾.