设A为n阶方阵,满足A^2=3A,证明:(1)4E-A可逆;(2)如果A不等于0,证明3E-A不可逆.
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/06 01:49:20
xPKn0II!Fr E XQ!|erIV, 5='Ihz8 "%=}7LJݛ$=Jַ]ڕ,W],m?=
%H%~mn]+O
Nu,Zn@R+RCGȂG-G~Yc|mxzSs[EhaI"YRL0Fdlfax-\&
设A为n阶方阵,满足A^2=3A,证明:(1)4E-A可逆;(2)如果A不等于0,证明3E-A不可逆.
设A为n阶方阵,满足A^2=3A,证明:(1)4E-A可逆;(2)如果A不等于0,证明3E-A不可逆.
设A为n阶方阵,满足A^2=3A,证明:(1)4E-A可逆;(2)如果A不等于0,证明3E-A不可逆.
(4E-A)(-E-A)=-4E+A-4A+A^2=-4E,因此4E-A可逆,其逆为(E+A)/4.
反证法:若3E-A可逆,则条件为(3E-A)A=0,左乘3E-A的逆得A=0,矛盾.
证明:设n阶方阵A满足A^2=A,证明A的特征值为1或0
设n方阵A满足A^2=A,E为n阶单位矩阵,证明R(A)+R(A-E)=n
设A为n阶方阵,且满足A^2-3A+2E=0,证明A的特征值只能是1或2
设n阶方阵A满足A*A-A-2E=0,证明A和E-A可逆
设A为N阶方阵,满足A^K=0,证明E-A可逆,并且(E-A)^-1=E+A+A^2+...+A^K-1
设n阶方阵A满足A^2=E,证明r(A-E)=n-r(A+E)
设A为n阶方阵,A不等于I,且满足r(A-I) r(A-3I)=n,证明x=3是的A特征值.
设A,B为n阶方阵,满足A+B=BA证明A-E为可逆矩阵
设A为n阶方阵,e为n阶单位矩阵,满足方程A²-3A-E=0,证明A可逆
设n阶方阵A和B满足条件A+B=AB,证明A-E为可逆矩阵
设A为n阶方阵,且满足(A-E)^2=2(A+E)^2,证明A是可逆的,并求A^-1
线性代数 设n阶方阵A满足A^2=E,|A+E |≠0,证明A=E
设n阶方阵A满足A^2-A-2i=0 证明则必有A-i可逆
设n阶方阵A满足A²=2A.证明A的特征值只能是0或2
设n阶方阵A满足A^2-A-2E=0怎么证明A-E可逆?
设n阶方阵A满足A2-A-7E=0,证明A和A-3E可逆
设n阶方阵A满足(A+E)3=0,证明矩阵A可逆,并写出A逆矩
方阵性质证明问题设AB为n阶方阵,证明|AB|=|A||B|