计算二重积分:∫[0,1]dx∫[0,x^½]e^(-y²/2)dy

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/15 08:35:27
计算二重积分:∫[0,1]dx∫[0,x^½]e^(-y²/2)dy
xQJA}bInn[̯munٖ޴Psa"(/[җ YW}NYm z39g8a::m98j VZ/]YFI5imVg~?I]WHi,4Bi8?MҤvo;gމs}yfoh,ٔSMޗυRƽI鯗Yۛ4AAfs42s劌A0l1Qot2VGɹXuO_FCQkhE W^ "#~I >z>EW,붢r-Y1(T )g&Pٖ3mtuL,QQ oBQ-E7&]̼ 6\ 6X#B1TM-Y/Ku_

计算二重积分:∫[0,1]dx∫[0,x^½]e^(-y²/2)dy
计算二重积分:∫[0,1]dx∫[0,x^½]e^(-y²/2)dy

计算二重积分:∫[0,1]dx∫[0,x^½]e^(-y²/2)dy
原式=∫dy∫e^(-y²/2)dx (作积分顺序变换)
=∫(1-y²)e^(-y²/2)dy
=∫e^(-y²/2)dy-∫y²e^(-y²/2)dy
=∫e^(-y²/2)dy-{[-ye^(-y²/2)]│+∫e^(-y²/2)dy} (应用分部积分法)
=∫e^(-y²/2)dy-[-e^(-1/2)+∫e^(-y²/2)dy]
=∫e^(-y²/2)dy+e^(-1/2)-∫e^(-y²/2)dy
=e^(-1/2)
=1/√e.

交换积分顺序

原式=