已知复数z1,z2,z3在复数坐标系内对应的点分别为A,B,C.且(z2-z1)/(z3-z1)=1+(4/3)i 求证:三角形ABC是直角已知复数z1,z2,z3在复数坐标系内对应的点分别为A,B,C.且(z2-z1)/(z3-z1)=1+(4/3)i求证:三角形ABC是直

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/23 22:32:51
已知复数z1,z2,z3在复数坐标系内对应的点分别为A,B,C.且(z2-z1)/(z3-z1)=1+(4/3)i 求证:三角形ABC是直角已知复数z1,z2,z3在复数坐标系内对应的点分别为A,B,C.且(z2-z1)/(z3-z1)=1+(4/3)i求证:三角形ABC是直
xTn@];Nm '?` "M@ThGYЇ&@F%j$D_" QJ,l{=1wFWzB 5ü}up;67jU^ujOlI?9&٨n No%Uby>Wr"4&F% +Dhww O^)Ap8fS5Dx[XV[I`fj,!!](#s( uٕDKIKgrmh)$Cv "//لpϰ̉ӟ\e2Q/LU(9׋ݢ((㤝;7qf{xX)mj`VuXwz_:x'%<yvB6jnDdV5ч|kclΜΨ?Y-Sk&lӌw1q7D\t&.]ahhqpq ˈ

已知复数z1,z2,z3在复数坐标系内对应的点分别为A,B,C.且(z2-z1)/(z3-z1)=1+(4/3)i 求证:三角形ABC是直角已知复数z1,z2,z3在复数坐标系内对应的点分别为A,B,C.且(z2-z1)/(z3-z1)=1+(4/3)i求证:三角形ABC是直
已知复数z1,z2,z3在复数坐标系内对应的点分别为A,B,C.且(z2-z1)/(z3-z1)=1+(4/3)i 求证:三角形ABC是直角
已知复数z1,z2,z3在复数坐标系内对应的点分别为A,B,C.且(z2-z1)/(z3-z1)=1+(4/3)i
求证:三角形ABC是直角三角形

已知复数z1,z2,z3在复数坐标系内对应的点分别为A,B,C.且(z2-z1)/(z3-z1)=1+(4/3)i 求证:三角形ABC是直角已知复数z1,z2,z3在复数坐标系内对应的点分别为A,B,C.且(z2-z1)/(z3-z1)=1+(4/3)i求证:三角形ABC是直
证明:由A(z1),B(z2),C(z3).可知,向量AB=z2-z1,向量AC=z3-z1,向量BC=z3-z2.(一)(z2-z1)/(z3-z1)=1+(4/3)i.===>3(z2-z1)=(z3-z1)(3+4i).两边取模得:3|z2-z1|=5|z3-z1|.===>|z2-z1|:|z3-z1|=5:3.(二)∵z2-z1=(z2-z3)+(z3-z1).∴(z2-z1)/(z3-z1)=[(z2-z3)+(z3-z1)]/(z3-z1)=[(z2-z3)/(z3-z1)]+1=1+(4/3)i.===>(z2-z3)/(z3-z1)=(4/3)i.===>3(z2-z3)=4i(z3-z1).两边取模得3|z2-z3|=4|z3-z1|.===>|z3-z1|:|z2-z3|=3:4.∴结合前面可知:|z2-z1|:|z3-z1|:|z2-z3|=5:3:4.===>|AB|:|AC|:|CB|=5:3:4.∴⊿ABC是Rt⊿,∠C=90º.

设向量a1(u,v)对应Z1 = u+vi
ABC按向量-a1平移,那么A点就移到坐标原点设此时B(x1,y1),C(x2,y2)
由题意可知x1+iy1=(x2+iy2)(1+4/3i)
化简得x1=x2-4/3y2,y1=4/3x2+y2
所以B可记为(x2-4/3y2,4/3x2+y2)
向量BC=(4/3y2,-4/3x2)
向量AC=(x2...

全部展开

设向量a1(u,v)对应Z1 = u+vi
ABC按向量-a1平移,那么A点就移到坐标原点设此时B(x1,y1),C(x2,y2)
由题意可知x1+iy1=(x2+iy2)(1+4/3i)
化简得x1=x2-4/3y2,y1=4/3x2+y2
所以B可记为(x2-4/3y2,4/3x2+y2)
向量BC=(4/3y2,-4/3x2)
向量AC=(x2,y2)
所以AC*BC=4/3x2*y2-4/3x2*y2=0
所以ABC是直角三角形

收起