在△ABC中,sinA:sinB:sinC=5:7:8,求证:∠B=60°

来源:学生作业帮助网 编辑:作业帮 时间:2024/12/02 08:57:47
在△ABC中,sinA:sinB:sinC=5:7:8,求证:∠B=60°
xN@_eB vI(alݓ$ Ѡ1b= 0QHQ/vfOk̺Tet d&yIK&N%>_ { ~\+A-ˎ|dkP#0 )6ƥ.mܢ#Xu$5gno~нj[qeَX@J<P7 /]5`!Or_a e_N| Ё@`gmUxQ^ytWo~ETI9on Bqb!yCиXHVyӸ:6fdJ~c }

在△ABC中,sinA:sinB:sinC=5:7:8,求证:∠B=60°
在△ABC中,sinA:sinB:sinC=5:7:8,求证:∠B=60°

在△ABC中,sinA:sinB:sinC=5:7:8,求证:∠B=60°
证明:
由正弦定理
a/sinA=b/sinB=c/sinC
∴a:b:c=sinA:sinB:sinC=5:7:8
设a=5t,b=7t,c=8t
由余弦定理
cosB=(a²+c²-b²)/2ac=(25+64-49)t²/(80t²)=1/2
∴∠B=60°
证毕

正弦定律,a/sinA=b/sinB=c/sinC
所以a : b : c = 5:7:8 (可直接假设三角形边长等于5,7,8)
余弦定理,
cosB = [(c^2+a^2) - b^2] /2ac = (8^2+5^2-7^2)/2*5*8 = 1/2
所以 B等于60度