f(x)=1-2a-2acosx-2sin^2x的最小值为g(a).(1)求g(a).(2)求能使g(a)=1/2的a值,并求当a取此值时f(x)的最大值

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/06 07:54:45
f(x)=1-2a-2acosx-2sin^2x的最小值为g(a).(1)求g(a).(2)求能使g(a)=1/2的a值,并求当a取此值时f(x)的最大值
xTJ@~Avic܍`UPb.9`{"T,A/Lvc8Ikb[)"ٙo曟LܺDCqKHOIm_KݎkAS(g<I Qq[tUw[~Nu(y{pfA vwC G8@ X][;AQT!GB24e4:1PMl [E J[0`6 io&)zr3Y; vP5'

f(x)=1-2a-2acosx-2sin^2x的最小值为g(a).(1)求g(a).(2)求能使g(a)=1/2的a值,并求当a取此值时f(x)的最大值
f(x)=1-2a-2acosx-2sin^2x的最小值为g(a).(1)求g(a).
(2)求能使g(a)=1/2的a值,并求当a取此值时f(x)的最大值

f(x)=1-2a-2acosx-2sin^2x的最小值为g(a).(1)求g(a).(2)求能使g(a)=1/2的a值,并求当a取此值时f(x)的最大值
f(x) = 1 - 2a - 2a cosx - 2sin²x
= 1 - 2a - 2a cosx - 2(1 - cos²x)
= 1 - 2a - 2a cosx - 2 + 2cos²x
= 2cos²x - 2a cosx - 2a - 1
= 2(cos²x - acosx) - 2a - 1
= 2[cos²x - 2(cosx)(a/2) + (a/2)² - (a/2)²] - 2a - 1
= 2(cosx - a/2)² - 2(a/2)² - 2a - 1
= 2(cosx - a/2)² - a²/2 - 2a - 1
抛物线开口向上,有最小值g(a) = -a²/2 - 2a - 1
-----------------------------------------------------------------------------------------------------------------------
g(a) = 1/2
-a²/2 - 2a - 1 = 1/2
a² + 4a + 3 = 0
a = -1 或 a = -3
-----------------------------------------------------------------------------------------------------------------------
当a = -1时
f(x) = 2(cosx + 1/2)² + 1/2
最大值 = 2(1 + 1/2)² + 1/2 = 5
当a = -3时
f(x) = 2(cosx + 3/2)² + 1/2
最大值 = 2(1 + 3/2)² + 1/2 = 13