解方程(x-2004)/(x-2005)-(x-2005)/(x-2006)=(x-2007)/(x-2008)-(x-2008)/(x-2009)会有赏分的~

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/19 14:40:40
解方程(x-2004)/(x-2005)-(x-2005)/(x-2006)=(x-2007)/(x-2008)-(x-2008)/(x-2009)会有赏分的~
xTn@~1`C "P{rKH ́ %A*S_c5fٝ]]=A-f*iU=Rx))ytơ1Ys$Uu +}!]'a;R|]uG`@vh2eYL3_xefs,{܇k^ lԳúd6+G4̥_{c

解方程(x-2004)/(x-2005)-(x-2005)/(x-2006)=(x-2007)/(x-2008)-(x-2008)/(x-2009)会有赏分的~
解方程(x-2004)/(x-2005)-(x-2005)/(x-2006)=(x-2007)/(x-2008)-(x-2008)/(x-2009)
会有赏分的~

解方程(x-2004)/(x-2005)-(x-2005)/(x-2006)=(x-2007)/(x-2008)-(x-2008)/(x-2009)会有赏分的~
本人提供一个解法:
由于(x-2004)/(x-2005)=1+1/(x-2005),其它三个分式同样进行拆分,最终得出:
[1+1/(x-2005)]-[1+1/(x-2006)]=[1+1/(x-2008)]-[1+1/(x-2009)]
化简:1/(x-2005)-1/(x-2006)=1/(x-2008)-1/(x-2009)
移项:1/(x-2005)+1/(x-2009)-[1/(x-2006)+1/(x-2008)]=0
通分:(2x-4014)/(x^2-4014x+2005*2009)-(2x-4014)/(x^2-4014x+2006*2008)=0
(2x-4014)[1/(x^2-4014x+2005*2009)-1/(x^2-4014x+2006*2008)]=0
可以看出,中括号中两个分式的分子相同,但分母不等,所以它们的差不等于0,所以只能是
2x-4014=0
x=2007

最后把x=2007代入原分式方程检验,知其符合要求.

答:x=2007
(x-2004)/(x-2005)=(x-2005+1)/(x-2005)=1+1/(x-2005)
(x-2004)/(x-2005)=1+1/(x-2005)
(x-2005)/(x-2006)=1+1/(x-2006)
(x-2004)/(x-2005)-(x-2005)/(x-2006)
=1+1/(x-2005)-[1+1/(x-...

全部展开

答:x=2007
(x-2004)/(x-2005)=(x-2005+1)/(x-2005)=1+1/(x-2005)
(x-2004)/(x-2005)=1+1/(x-2005)
(x-2005)/(x-2006)=1+1/(x-2006)
(x-2004)/(x-2005)-(x-2005)/(x-2006)
=1+1/(x-2005)-[1+1/(x-2006)]
=1/(x-2005)-1/(x-2006)
=-1/[(x-2005)(x-2006)]
(x-2007)/(x-2008)-(x-2008)/(x-2009)
=-1/[(x-2008)/(x-2009)]
-1/[(x-2005)(x-2006)]=-1/[(x-2008)/(x-2009)]
(x-2005)(x-2006)=(x-2008)(x-2009)
-4011x+2005*2006=-4017x+2008*2009
6x=2008*2009-2005*2006=(2005+3)*2009-2005*2006
6x=2005*2009+3*2009-2005*2006=3*(2005+2009)
2x=4014
x=2007

收起