若关于X的方程X²+KX+1=0的一个根是2+根号3,则方程另两个根分别是多少?K值是多少?

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/20 09:38:24
若关于X的方程X²+KX+1=0的一个根是2+根号3,则方程另两个根分别是多少?K值是多少?
xRJ@~4KmQl}@@o:k-jEQ0*MUu,’/ܰΙEţnl2ɐNN0 Jia)?FFώwˢU@NCٱӯKMS:9]F+ҒXRST5e $|<0N[D5$csf-Crr6`W?B{#Eٜ!Fܿ'BoM ~˝`>FY_wejT${lz[0C5' 7#

若关于X的方程X²+KX+1=0的一个根是2+根号3,则方程另两个根分别是多少?K值是多少?
若关于X的方程X²+KX+1=0的一个根是2+根号3,则方程另两个根分别是多少?K值是多少?

若关于X的方程X²+KX+1=0的一个根是2+根号3,则方程另两个根分别是多少?K值是多少?
因为:a=1,b=k,c=1
由韦达定理得,X1*X2=c/a=1 X1+X2= - b/a=-k
又x1=2+根号3
所以x2=2-根号3
-k=X1+X2=(2+根号3)+(2-根号3)=4

设x1=2+√3,另一根为x2,则由韦达定理,得
x1•x2=1,从而 x2=1/x1=1/(2+√3)=2-√3
即两根为 2+√3和2-√3
k=-(x1+x2)=-4

X²+KX+1=0的根为:2±√3
k=-[(2+√3)+(2-√3)]=-4

题目是不是 若关于X的方程X²+KX+1=0的一个根是2+根号3,则方程另一个根是
∵X²+KX+1=0 x1=[-k+√﹙k²-4﹚]/2=2+√3 x2==[-k-√﹙k²-4﹚]/2
∴k²-4=3×2²=12
∴K=±4
又 -k=2×2
∴k=-4
则方程另一个根是
x2=2-√3