求数列-1,2,-3,4,-5…的前n项和

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/30 14:16:38
求数列-1,2,-3,4,-5…的前n项和
xъ@_%L9Lҥ鍾$iQw7T] ( ވ.ֺOMjIҥR[b99 il?;>|tV3kv }TNOϟ4=8n6QmD;K$[nsEK|v-}N;Q :n{]l%D;5gsp,f AhghH{vHB4["t7beʽ /L !- zu ;pI,dss8VAtö,B"]1l" ;0 ww@u+F4V"g$*Uf4>Ni0̏^N]j`gsP) DUuEqz?X],AU)W(VV<ɥ:+T/\l Ls®8kf"[H{,{vEKf^i?}Gٷ`~3ywˎ>7:

求数列-1,2,-3,4,-5…的前n项和
求数列-1,2,-3,4,-5…的前n项和

求数列-1,2,-3,4,-5…的前n项和

an=(2n-1)/2^n
Sn=1/2+3/4+5/8+...+(2n-3)/2^(n-1)+(2n-1)/2^n
1/2Sn= 1/4+3/8+... +(2n-3)/2^n+(2n-1)/2^(n+1)
上式减下式:
Sn-1/2Sn=1/2+2/4+2/8+2/16+... + 2/2^n-(2n...

全部展开

an=(2n-1)/2^n
Sn=1/2+3/4+5/8+...+(2n-3)/2^(n-1)+(2n-1)/2^n
1/2Sn= 1/4+3/8+... +(2n-3)/2^n+(2n-1)/2^(n+1)
上式减下式:
Sn-1/2Sn=1/2+2/4+2/8+2/16+... + 2/2^n-(2n-1)/2^(n+1)
=1/2-(2n-1)/2^(n+1)-1+2(1/2^1+1/2^2+1/2^3+...+1/2^n)
=1/2-(2n-1)/2^(n+1)-1+(1-1/2^n)/(1-1/2)
=-1/2-(2n-1)/2^(n+1)+2-1/2^(n-1)
=3/2-[(2n-1)/4+1]/2^(n-1)
=3/2-(2n+3)/2^(n+1)
于是1/2Sn=3/2-(2n+3)/2^(n+1)
Sn=3-(2n+3)/2^n
求采纳为满意回答。

收起