化简sin²(α+π)·cos(π+α)·cot(-α-2π)/tan(π+α)·cos²(-α-π)求答案

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/18 08:25:39
化简sin²(α+π)·cos(π+α)·cot(-α-2π)/tan(π+α)·cos²(-α-π)求答案
x){3<5eCs ks7hڞ_qAF0DCF]#~IbD1TH(lcS-I*ҧv6uy4G58l-s5tAt qn#\﹍P]Hz>PO_Le`J5 6yvPs^,_L؄lP= ?8t% @&B sa*E 56Ad-DxټƩO4S7.CndhD̚phĒ`J,<%bK-Ϧl{u; E

化简sin²(α+π)·cos(π+α)·cot(-α-2π)/tan(π+α)·cos²(-α-π)求答案
化简sin²(α+π)·cos(π+α)·cot(-α-2π)/tan(π+α)·cos²(-α-π)求答案

化简sin²(α+π)·cos(π+α)·cot(-α-2π)/tan(π+α)·cos²(-α-π)求答案
[sin²(α+π)·cos(π+α)·cot(-α-2π)]/[tan(π+α)·cos²(-α-π)]
=[sin²α(-cosα)(-cotα)]/[tanαcos²α]
=(sin²αcosα*cosα/sinα)/(sinα/cosα*cos²α)
=cosα

解sin²(α+π)·cos(π+α)·cot(-α-2π)/tan(π+α)·cos²(-α-π)
=sin²(α)·(-cos(α))·(-cot(α+2π))/(tan(α))·cos²(α)
=sin²(α)·cos(α)·cot(α+2π)/(tan(α))·cos²(α)
=sin²(α)·c...

全部展开

解sin²(α+π)·cos(π+α)·cot(-α-2π)/tan(π+α)·cos²(-α-π)
=sin²(α)·(-cos(α))·(-cot(α+2π))/(tan(α))·cos²(α)
=sin²(α)·cos(α)·cot(α+2π)/(tan(α))·cos²(α)
=sin²(α)·cos(α)·cot(α)/(tan(α))·cos²(α)
=sin²(α)·cos(α)/(tan²(α)·cos²(α)
=sin²(α)·cos(α)/tan²(α)·cos²(α)
=sin²(α)·cos(α)/[sin²(α)/cos²a·cos²(α)]
=sin²(α)·cos(α)/[sin²(α)]
=cosa

收起