若不等式1/(n+1)+1/(n+2)+1/(n+3)+.+1/(3n+1)>a/24对一切正整数 都成立,求正整数a的最大值,并证明.用数学归纳法

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/29 11:55:50
若不等式1/(n+1)+1/(n+2)+1/(n+3)+.+1/(3n+1)>a/24对一切正整数 都成立,求正整数a的最大值,并证明.用数学归纳法
x͑J@_e t1EC$ Thij O!bUt`3O;_]|=no\x|7jQL*< <<4o_aiwli[a_JjB;ዖIB:IrՖZߤwMZ!@&U٪$W8dnU$n>A M2n ~QXp[~v|OgebR_uX

若不等式1/(n+1)+1/(n+2)+1/(n+3)+.+1/(3n+1)>a/24对一切正整数 都成立,求正整数a的最大值,并证明.用数学归纳法
若不等式1/(n+1)+1/(n+2)+1/(n+3)+.+1/(3n+1)>a/24
对一切正整数 都成立,求正整数a的最大值,并证明.用数学归纳法

若不等式1/(n+1)+1/(n+2)+1/(n+3)+.+1/(3n+1)>a/24对一切正整数 都成立,求正整数a的最大值,并证明.用数学归纳法
f(n)=1/(n+1) + 1/(n+2) +1/(n+3) +……+1/(3n+1)
f(n+1)=1/(n+2) + 1/(n+3) +1/(n+4) +……+1/[3(n+1)+1]
f(n+1)-f(n)=1/(n+1) - 1/(3n+2)-1/(3n+3)-1/(3n+4)>0
所以函数f(n)对于n为正整数时为单调增函数
所以原不等式等效于a/24