高中数学(不等式证明)已知a2+b2=1,求证|acosa+bsina|

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/15 20:53:46
高中数学(不等式证明)已知a2+b2=1,求证|acosa+bsina|
xRN@.6LB aXgd$#REjIj4* H?N[WSacә{{νy Z0TZԨf3kz!;T3j\X ٌ /CZ΅b2^?3P-wx.ڈXN m 4)1d駰3ZDk#_Vn @CVO5 Ҡeq9*g57;P5?=TO$aCs-h脖c9nd\0A-,3Wzz`d; 6 4_zo"^A  _,xyybW{qQ㢩gK0yf>OZ

高中数学(不等式证明)已知a2+b2=1,求证|acosa+bsina|
高中数学(不等式证明)
已知a2+b2=1,求证|acosa+bsina|

高中数学(不等式证明)已知a2+b2=1,求证|acosa+bsina|
用辅助角公式:asinx+bcosx=√(a^2+b^2)*sin(x+φ),其中φ为辅助角,tanφ=b/a
所以对于本题:|acosa+bsina|=|√(a^2+b^2)*sin(x+φ)|
由于题中已知a^2+b^2=1,所以|√(a^2+b^2)*sin(x+φ)|=|sin(x+φ)|

引辅助角,acosa+bsina=根号(a^2+b^2) *sin(a+M) 其中tanM=a/b
=sin(a+M) 绝对值小于等于1.

解:∵a2+b2=1∴设a=SinB,b=cosB∴|acosa+bsina|=|sinBcosa+cosBsina|=|sin(B+a)|≤1

直接用柯西不等式,
(acosa+bsina)^2≤(a^2+b^2)(cosa^2+sina^2)=1
故|acosa+bsina|≤1
柯西不等式:http://baike.baidu.com/view/7618.htm