已知函数y=f(x)是定义在(-2.2)上的减函数,具有性质.x∈(-2.2)时f(-x)=-f(x),若f(m)+f(2m-1)>0,求实数m的范围.

来源:学生作业帮助网 编辑:作业帮 时间:2024/12/03 10:31:07
已知函数y=f(x)是定义在(-2.2)上的减函数,具有性质.x∈(-2.2)时f(-x)=-f(x),若f(m)+f(2m-1)>0,求实数m的范围.
xQN@ml]KE!z*V!h h0b"!Rqc-gۦy͛7bkx?bO~rZ;36.OutTDv%P].yqߎUK9- QlTk|~Φ! 5/XoQć.1*޹|̟Yx3W5V)YL5 s(˂=J.yn-i'#+Mvxc 'h aQA>LT <a#E77؄,f%h7-V~͌4#,੔#t}7 |SgQ†4ΦQHv+ 

已知函数y=f(x)是定义在(-2.2)上的减函数,具有性质.x∈(-2.2)时f(-x)=-f(x),若f(m)+f(2m-1)>0,求实数m的范围.
已知函数y=f(x)是定义在(-2.2)上的减函数,具有性质.x∈(-2.2)时f(-x)=-f(x),若f(m)+f(2m-1)>0,求实数m的范围.

已知函数y=f(x)是定义在(-2.2)上的减函数,具有性质.x∈(-2.2)时f(-x)=-f(x),若f(m)+f(2m-1)>0,求实数m的范围.
1、由f(-x)=-f(x)得出f(2m-1)=-f(1-2m)
又f(m)+f(2m-1)>0,f(m)>f(1-2m)
因为是减函数,所以,m

由题意可知;-2 -2<2m-1<2 (2)
因为f(m)+f(2m-1)>0,所以f(m)>-f(2m-1)
以因为:f(-x)=-f(x),所以f(m)>f(1-2m)
以因为是减函数,所以m<1-2m (3)
解上面三个不等式得:-1/2所以m的范围是-1/2

已知f(x)是定义在(0,正无穷)上的增函数且f(x/y)=f(x)-f(y).求f(1)的值. 已知函数y=f(x)是定义在R上的函数,并且满足f(x+3)=-1/f(x),当1≤x 已知函数y=f(x)是定义在R上的奇函数,且当x 已知函数y=f(x)是定义在R上的奇函数,当x 已知函数f(x)是定义在(0,正无穷大)上的增函数,且f(x/y)=f(x)-f(y),若f(6)=1,解不等式f(x+3)-f(1/x) 已知f(x)是定义在R上的函数,对任意的x,y∈R,都有f(x+y)+f(x-y)=2f(x)f(y),已知f(x)是定义在R上的函数,对任意的x,y∈R,都有f(x+y)+f(x-y)=2f(x)f(y),且f(0)≠0(1):f(0)=1(2):判断函数的奇偶性 已知函数y=f(x)是定义在R上增函数,则f(x)=0的根 已知f(x)是定义在R上的函数,对任意的x,y∈R,都有f(x+y)=f(x)+f(y),且x>0时有f(x)>0 ⑴判断函数奇偶性已知f(x)是定义在R上的函数,对任意的x,y∈R,都有f(x+y)=f(x)+f(y),且x>0时有f(x)>0⑴判断函数 已知函数y=f(x)是定义在R上的偶函数,当0 已知函数f(x)是定义在【-1,1】上的奇函数,且f(x)在定义域上是减函数.(1)求函数y=f(x+1)定义域(2)若 f(x+2)+f(x-1) 已知F(X)是定义在R上的函数满足F(X+Y)=F(X)+F(Y)+1,则F(X)+1的奇偶性如何? 已知函数f(x)是定义在()上的减函数,且满足f(xy)=f(x)+f(y),f(1/3)=1.f(1)=0,若f(x)+F(2-x) 已知函数f(x)是定义在区间(0,+∞)上的减函数,且满足f(xy)=f(x)+f(y),f(1/3)=1(1)求f(1)(2)若f(x)+f(2-x) 已知函数f(x)是定义在(0,+无穷)上的减函数且满足f(xy)=f(x)+f(y),f(1/3)=11.求f(1)2.若f(x)+f(2-x) 已知f(x)是定义在(0,+00)上的增函数.且f(x/y)=f(x)-f(y).证明F(XY)=F(X)+F(Y) 已知函数f(x)是定义在正实数集上的减函数,且满足f(x)=f(x) f(y),f=(三分之一)=1,若f(x)+F(2-x) 已知函数f(x)是定义在(0,+∞)上的减函数,fx(xy)=f(x)+f(y) ,f(1/3)=1.f(x) 已知f(x)是定义在(0,+∞)上的增函数,且f(x/y)=f(x)-f(y).若f(6)=1,解不等式f(x+3)-f(1/x)