若点(p,q)在区域为D:{(p,q)||p|≤3,|q|≤3}中按均匀分布出现(1)点M(x,y)横纵坐标分别由掷骰子确定,第一次确定横坐标,第二次确定纵坐标,则点M(x,y)落在上述区域内的概率?(不含边界)
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/27 15:36:33
若点(p,q)在区域为D:{(p,q)||p|≤3,|q|≤3}中按均匀分布出现(1)点M(x,y)横纵坐标分别由掷骰子确定,第一次确定横坐标,第二次确定纵坐标,则点M(x,y)落在上述区域内的概率?(不含边界)
若点(p,q)在区域为D:{(p,q)||p|≤3,|q|≤3}中按均匀分布出现
(1)点M(x,y)横纵坐标分别由掷骰子确定,第一次确定横坐标,第二次确定纵坐标,则点M(x,y)落在上述区域内的概率?(不含边界)
(2)试求方程x²+2px-q²+1=0有两个实数根的概率.
若点(p,q)在区域为D:{(p,q)||p|≤3,|q|≤3}中按均匀分布出现(1)点M(x,y)横纵坐标分别由掷骰子确定,第一次确定横坐标,第二次确定纵坐标,则点M(x,y)落在上述区域内的概率?(不含边界)
1.1/9 区域D内有正整数坐标有2*2=4个,而掷筛子确定的坐标有6*6=36种,所以M落在区域D内的概率为4/36=1/9
2.5/9 上述方程若有两个实数根就要使判别式大于0,即 p的平方+q的平方大于1 ,可以表示成在半径为一的圆外,而不符合的有4个,则符合的有5个,概率是5/9
(1)区域D内有正整数坐标有3*3=9个,而掷筛子确定的坐标有6*6=36种,所以M落在区域D内的概率为9/36=0.25
(2)上述方程要有实数根,则它的判别式大于0,得到不等式p的平方+q的平方大于1,是半径为1的圆外,区域D内只有圆上的4个正整数坐标点不满足题意,所以概率为5/9。...
全部展开
(1)区域D内有正整数坐标有3*3=9个,而掷筛子确定的坐标有6*6=36种,所以M落在区域D内的概率为9/36=0.25
(2)上述方程要有实数根,则它的判别式大于0,得到不等式p的平方+q的平方大于1,是半径为1的圆外,区域D内只有圆上的4个正整数坐标点不满足题意,所以概率为5/9。
收起
1.1/9 2.0
1 1/ 4
2 5/9