已知 x=4-√3,则分式(x^4-6^3-2^2+18x+23)/(x^2-8x+15)的值为(x^4-6x^3-2x^2+18x+23)/(x^2-8x+15)
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/27 22:14:23
已知 x=4-√3,则分式(x^4-6^3-2^2+18x+23)/(x^2-8x+15)的值为(x^4-6x^3-2x^2+18x+23)/(x^2-8x+15)
已知 x=4-√3,则分式(x^4-6^3-2^2+18x+23)/(x^2-8x+15)的值为
(x^4-6x^3-2x^2+18x+23)/(x^2-8x+15)
已知 x=4-√3,则分式(x^4-6^3-2^2+18x+23)/(x^2-8x+15)的值为(x^4-6x^3-2x^2+18x+23)/(x^2-8x+15)
∵当x=4-√3时,x²-8x+15=(x-3)(x-5)=(1-√3)(-1-√3)=2
x^4-6x³-2x²+18x+23
=x²(x²-8x+15)+2x(x²-8x+15)-(x²-8x+15)-20x+38
=2x²+4x-2-20x+38
=2x²-16x+36
=2(x²-8x+15)+6
=4+6
=10,
∴(x^4-6x³-2x²+18x+23)/(x²-8x+15)=10/2=5
故答案为:5
你的这个分式有误吧?分子怎么出现三个常数项?
我算的是5
不知道对不对
x=4-√3
x-4=-√3
(x-4)²=3
x²-8x+16-3=0
x²-8x+13=0
x^4-6x³-2x²+18x+23
=x^4-8x³+13x²+2x³-15x²+18x+23
=x²(x²-8x+13)+2x...
全部展开
x=4-√3
x-4=-√3
(x-4)²=3
x²-8x+16-3=0
x²-8x+13=0
x^4-6x³-2x²+18x+23
=x^4-8x³+13x²+2x³-15x²+18x+23
=x²(x²-8x+13)+2x³-16x²+26x+x²-8x+23
=x²(x²-8x+13)+2x(x²-8x+13)+x²-8x+23
=x²-8x+23
因为x²-8x+13=0
x²-8x+13+10=10
x²-8x+13+2=2
(x^4-6x^3-2x^2+18x+23)/(x^2-8x+15)=10/2=5
收起