已知x,y,z∈R+,且x+y+z=1,求u=根号x2+y2+xy +根号y2+z2+yz +根号x2+z2+xz 的最小值答案给出是易证 x2+y2+xy大于等于3/4(x+y)2。如何证出 x2+y2+xy大于等于3/4(x+y)2?证出后又有什么用

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/18 22:40:40
已知x,y,z∈R+,且x+y+z=1,求u=根号x2+y2+xy +根号y2+z2+yz +根号x2+z2+xz 的最小值答案给出是易证 x2+y2+xy大于等于3/4(x+y)2。如何证出 x2+y2+xy大于等于3/4(x+y)2?证出后又有什么用
xRN@x(f_y`C!.**ِJ RF$ ]PB3džU~DYW,*UftչsϹ֣Uyw[%V5e/jm-=ujqs{ٿKBz9V UtNRu_'8ʇ;.W[m<eO&LNzg#;CV.NT@b}V]W= FAZ?֩l ح[oW WxٌV F|/d{5i2es@lAn츞C(B*,gyp(11a-[[9-Xc#ۼ))YZ,[ YhO6o:̧cD63͏}~v%5Eđ3 o

已知x,y,z∈R+,且x+y+z=1,求u=根号x2+y2+xy +根号y2+z2+yz +根号x2+z2+xz 的最小值答案给出是易证 x2+y2+xy大于等于3/4(x+y)2。如何证出 x2+y2+xy大于等于3/4(x+y)2?证出后又有什么用
已知x,y,z∈R+,且x+y+z=1,求u=根号x2+y2+xy +根号y2+z2+yz +根号x2+z2+xz 的最小值
答案给出是易证 x2+y2+xy大于等于3/4(x+y)2。如何证出 x2+y2+xy大于等于3/4(x+y)2?证出后又有什么用

已知x,y,z∈R+,且x+y+z=1,求u=根号x2+y2+xy +根号y2+z2+yz +根号x2+z2+xz 的最小值答案给出是易证 x2+y2+xy大于等于3/4(x+y)2。如何证出 x2+y2+xy大于等于3/4(x+y)2?证出后又有什么用

望采纳!