高中立体几何题已知四棱锥P-ABCD,底面ABCD为菱形,PA⊥平面ABCD,∠ABC=60°,E、F分别是BC、PC的中点.若H为PD上的动点,EH与平面PAD所成最大角的正切值为(√6)/2,求二面角E-AF-C的余弦值.

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/24 07:31:15
高中立体几何题已知四棱锥P-ABCD,底面ABCD为菱形,PA⊥平面ABCD,∠ABC=60°,E、F分别是BC、PC的中点.若H为PD上的动点,EH与平面PAD所成最大角的正切值为(√6)/2,求二面角E-AF-C的余弦值.
xT]OF+RR@$kUUyf춅uc>mQBDm#H цR'tǻ<zJQ#^ۗ8sw2~18 ߫;g[_?n7>8a2Mʚ:h+]GwTKx;aq,o%M().w$ GpۥM2Habrs[20l!CpDffN,~N-o`ز7pcQl J.7(lm䛮

高中立体几何题已知四棱锥P-ABCD,底面ABCD为菱形,PA⊥平面ABCD,∠ABC=60°,E、F分别是BC、PC的中点.若H为PD上的动点,EH与平面PAD所成最大角的正切值为(√6)/2,求二面角E-AF-C的余弦值.
高中立体几何题
已知四棱锥P-ABCD,底面ABCD为菱形,PA⊥平面ABCD,∠ABC=60°,E、F分别是BC、PC的中点.若H为PD上的动点,EH与平面PAD所成最大角的正切值为(√6)/2,求二面角E-AF-C的余弦值.

高中立体几何题已知四棱锥P-ABCD,底面ABCD为菱形,PA⊥平面ABCD,∠ABC=60°,E、F分别是BC、PC的中点.若H为PD上的动点,EH与平面PAD所成最大角的正切值为(√6)/2,求二面角E-AF-C的余弦值.

如图;AE⊥BC(三合一),∴EA⊥PAD.作AH⊥PD. 则EH⊥PD.此时

EH与平面PAD所成角最大,设AB=2,则AE=√3, √3/AH=(√6)/2. AH=√2.

设AP=x,看⊿PAD.AH×PD=2x.即√2×√(x&sup2;+4)=2x, 解得x=2.

⊿PAC等腰直角.注意PAC⊥ABCD,作EQ⊥AC.QO⊥AF.有EQ=√3/2.

QO=CF-CQ/√2=√2-1/(2√2).tan∠QOE=EQ/QO=√(2/3)

cos∠QOE=√(3/5),  二面角E-AF-C的余弦值=√(3/5)

[注意EQ⊥PAC.∠∠QOE为二面角E-AF-C的平面角]

高中立体几何题 已知四棱锥P-ABCD中, 高中立体几何证明题:如图:在四棱锥P-ABCD中,底面ABCD是平行四边形,E是PC的中点,求证 :PA 平行 平面EDB 高中立体几何题,如图,已知四棱锥P-ABCD的底面为等腰梯形 AB∥CD,AC⊥BD,PH是四棱锥的高,垂足为H如图,已知四棱锥P-ABCD的底面为等腰梯形,AB∥CD,AC⊥BD,PH是四棱锥的高,垂足为H,E为AD的中点.(1)证明PE 高中立体几何题已知四棱锥P-ABCD,底面ABCD为菱形,PA⊥平面ABCD,∠ABC=60°,E、F分别是BC、PC的中点.若H为PD上的动点,EH与平面PAD所成最大角的正切值为(√6)/2,求二面角E-AF-C的余弦值. 高中立体几何,请问我这样做对不对呢?原题:在四棱锥O-ABCD中,底面ABCD为平行四边形,M为高中立体几何,请问我这样做对不对呢?原题:在四棱锥O-ABCD中,底面ABCD为平行四边形,M为OA的中点,N为BC的 高中立体几何二面角一道题目!四棱锥P-ABCD.PA垂直矩形ABCD所在平面,M、N分别是AB、PC的中点,且MN垂直于平面PC,求二面角P-CD-B的大小 高中立体几何 不难的,在底面是平行四边形的四棱锥P--ABCD中,AB垂直于AC,PA垂直于ABCD且PA=AB,点E是PD的中点.求证:PB//平面AEC 高中立体几何 急在四棱锥P-ABCD中,底面ABCD是菱形,PA⊥ABCD,AB=1,PA×AC=1 角ABC=⊙若⊙=90 求二面角A-PC-B的大小 试求四棱锥P-ABCD的体积V的取值范围 一道高中立体几何,已知四棱锥四个侧面都是腰长为√7,底边长为2的等腰三角形,求棱锥的体积 高中立体几何中直棱锥,正棱锥有什么特点 高中立体几何题. 高中立体几何 二面角已知四棱锥P-ABCD是底面ABCD是平行四边形,面PAB垂直面ABCD,且PA=BC=a,PB=AC=2a,角APB=60度,1,求二面角B-PC-A的正弦值 2,若点M在CD上,且DM=1/3DC,求点A到平面PMB的距离如图 高中立体几何:四棱锥P-ABCD的底面是矩形,PA垂直平面ABCD,PA=AB=1,BC=根号2四棱锥P-ABCD的底面是矩形,PA垂直平面ABCD,PA=AB=1,BC=根号21,如果在BC上存在E点,使得平面PED垂直PAC,证明E为BC的中点2,在1的条 高中立体几何:棱柱,棱锥…的基本概念? 一道高中立体几何的题目.已知长方体ABCD-A1B1C1D1中,AB=BC=2,AA1=4,O1是底面A1B1C1D1的中心.E是CO1上的点,设CE等于X,四棱锥E-ABCD的体积为y,求y关于X的函数关系式..图只有自己画一下了, 高中立体几何一道四棱锥s-abcd底面是矩形,AD=2,SA垂直底面ABCD,已知棱BC上存在异于BC的一点S,使得PS垂直PD.(1)求AB长的最大值(2)当AB长度取到最大时,求异面直线ap与sd所成角的余弦值 最好用 高中立体几何证明题 一道高中立体几何题,