在RT三角形ABC中,已知AB=AC,角A等于90度,D为AB上任意一点,DF垂直于AB,DE垂直于AC,M为BC的中点.试判断三角形MEF是什么形状的三角形,并证明你的结论

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/25 21:49:15
在RT三角形ABC中,已知AB=AC,角A等于90度,D为AB上任意一点,DF垂直于AB,DE垂直于AC,M为BC的中点.试判断三角形MEF是什么形状的三角形,并证明你的结论
xR]O`+ju݀ +۷{C E@ݜ@t|„ P%ٯ]<}v^I<99ωeݣF61o^~U$"C22y٨7dԋFe-e[w$^V TH^juS?6mZ['F+g4tb,o6jɢb\U a817Ӿi!3-ol6˴-Uܐ )H>MyY+UD迮~ĉЗSO; fP'Ytv}D]"AH3"gDn(r"*-W rˇR L1b#lk8tޞf30;sɅ`qZQN~aC '8 NBZΤx<%Lj<%#TdLKEx4ƢIm,g44aL9)kni5j_g෣rF@I01/{>|dܩ

在RT三角形ABC中,已知AB=AC,角A等于90度,D为AB上任意一点,DF垂直于AB,DE垂直于AC,M为BC的中点.试判断三角形MEF是什么形状的三角形,并证明你的结论
在RT三角形ABC中,已知AB=AC,角A等于90度,D为AB上任意一点,DF垂直于AB,DE垂直于AC,M为BC的中点.
试判断三角形MEF是什么形状的三角形,并证明你的结论

在RT三角形ABC中,已知AB=AC,角A等于90度,D为AB上任意一点,DF垂直于AB,DE垂直于AC,M为BC的中点.试判断三角形MEF是什么形状的三角形,并证明你的结论
题中D应为BC上任意一点
MEF为等腰直角三角形
证明:连接AM
∵A=90°,M为BC中点
∴AM=MC
又∵AB=AC,DF⊥AB,DE⊥AC
∴FA=EC,∠BAM=∠BCA=45°,AM⊥BC
∴△AMF≌△CME
∴FM=EM,∠FMA=∠CME
∴∠FME=∠CME+∠AME=∠AMC=90°
∴△MEF为等腰直角三角形
图在这里:http://hi.baidu.com/%D2%D7%CB%AE%D0%A1%D9%E2/album/item/c4adbc1a0ef41bd58c6f53bf51da81cb38db3df5.html

△MEF必是等腰直角三角形。
证明:不失一般性令D在CM之间。
因为DE⊥AC,DF⊥AB,又∠A=90°,所以AE=AB-AF=BF
又在等腰Rt△ABC中M为BC中点,所以AM=BM,加上∠EAM=∠FBM=45°
故△EAM≌△FBM,得:EM=FM,∠EMA=∠FMB。∠EMA=∠FMB。
同理,由CE=AF,∠C=∠FAM=45°,...

全部展开

△MEF必是等腰直角三角形。
证明:不失一般性令D在CM之间。
因为DE⊥AC,DF⊥AB,又∠A=90°,所以AE=AB-AF=BF
又在等腰Rt△ABC中M为BC中点,所以AM=BM,加上∠EAM=∠FBM=45°
故△EAM≌△FBM,得:EM=FM,∠EMA=∠FMB。∠EMA=∠FMB。
同理,由CE=AF,∠C=∠FAM=45°,CM=AM有△ECM≌△FAM,得:∠EMC=∠FMA。
所以,∠EMF=∠FMA+∠EMA=∠EMC+∠FMB。
又∠EMF+∠EMC+∠FMB=180°,所以,∠EMF=90°。
综合上述:△MEF必然是等腰直角三角形!!

收起