第30题,积分换元法,

来源:学生作业帮助网 编辑:作业帮 时间:2024/12/01 20:24:39
第30题,积分换元法,
xݎD_eK&MzSc|LoVTJ U)E.B/xmW`4MҲ73>3\{1 N>x,n:^wH*"f.Z`cF[-s9ɵզOdu7 kf~zc5ʲ QY$()1ILA`h4eacq* i퉳/%4^HceN$MX<`$(Di^.rmx|oJns P] Ԇ#}|I$'4A ˜#YD14I &" A#JK* s_dJD)r׊qFh0p505.pTB*,96j.j+2UVFͽ-U{0RVB4@fciyc^M%Wr[-`R^ *]XW|{Q-N+j͊j3ss9VYs8lLhՈK5n4VP5rt2.$kCJ )|1/xmc2)v¦&΋dV 32K,tat56Dhd=o&Xo,n{pםnԃ^wn: =?ZBZ]U͔?>ޙ):`3{}do_ '?|;?ܟC'mF&|mSYϽ]ɗ߾^~hS|'8ĕJyzxzoq?#=,~v&/nh

第30题,积分换元法,
第30题,积分换元法,
 

第30题,积分换元法,
there're 3 methods you could use.

actually the infininte has many solutions(non-unique),so you don't mind the forms of these solutions.each of them has the same derivative but differs from a constant C.
we could use the relationship arcsinx + arccosx = π/2 for interchange.



but one thing you still need to pay attention,these solutions are valid for the situation x > 1 only,for the situation x < 1,you should do once more substituion due to different domains of the inverse secant function.

设t-x^2=√(x^4-1),x=√((1+t^2)/2)
原积分=∫1/(√((1+t^2)/2)×(t-((1+t^2)/2)))dxdx=( √((1+t^2)/2))'=t/ √((1+t^2)/2原积分=∫t/((1+t^2)×(t-((1+t^2/2)修正一下,dx=t/√(2(1+t^2))原积分=∫-2t/((1+t^2)(1-t)^2)下面你自己解下这个多项式分式积分。...

全部展开

设t-x^2=√(x^4-1),x=√((1+t^2)/2)
原积分=∫1/(√((1+t^2)/2)×(t-((1+t^2)/2)))dx

收起