数列{an}的前n项和记为sn,已知a1=1,An+1=(n+2)sn/n 1数列{sn/n}是等比数列 2sn+1=4an数列{an}的前n项和记为sn,已知a1=1,An+1=(n+2)sn/n 1 数列{sn/n}是等比数列 2 sn+1=4an

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/24 06:59:34
数列{an}的前n项和记为sn,已知a1=1,An+1=(n+2)sn/n 1数列{sn/n}是等比数列 2sn+1=4an数列{an}的前n项和记为sn,已知a1=1,An+1=(n+2)sn/n 1 数列{sn/n}是等比数列 2 sn+1=4an
xTj@~=ZEGAOЃ:b'!J))9qIӚLu+tvW?+J襽Hoݙ[yvg}؉_>$nb[ qs=SN>)AY!8@h*;28s Jۇ'n@O7Q7(FWΠ3П]sUTO"ϰ:Tqf5 p|1B]#c]tu(M-d~"~1a{8%ٱی4z3bS&cLfXFڬW&򆀃 %߯oŰzb3QhEz^yfv lvhk UI+q:5"穻r}xja쪊i5 9'TfA|>W/ŏC%'(6 ZM~k%frWK\rV9RNS9BG RS5Vmbt읊˅X c+cF/Gkq3רZ9 :(Sכ/7F7k

数列{an}的前n项和记为sn,已知a1=1,An+1=(n+2)sn/n 1数列{sn/n}是等比数列 2sn+1=4an数列{an}的前n项和记为sn,已知a1=1,An+1=(n+2)sn/n 1 数列{sn/n}是等比数列 2 sn+1=4an
数列{an}的前n项和记为sn,已知a1=1,An+1=(n+2)sn/n 1数列{sn/n}是等比数列 2sn+1=4an
数列{an}的前n项和记为sn,已知a1=1,An+1=(n+2)sn/n
1 数列{sn/n}是等比数列
2 sn+1=4an

数列{an}的前n项和记为sn,已知a1=1,An+1=(n+2)sn/n 1数列{sn/n}是等比数列 2sn+1=4an数列{an}的前n项和记为sn,已知a1=1,An+1=(n+2)sn/n 1 数列{sn/n}是等比数列 2 sn+1=4an
1、A(n+1)=(n+2)sn/n=S(n+1)-Sn
即nS(n+1)-nSn=(n+2)Sn
nS(n+1)=(n+2)Sn+nSn
nS(n+1)=(2n+2)Sn
S(n+1)/(n+1)=2Sn/n
即S[(n+1)/(n+1)]/[Sn/n]=2
S1/1=A1=1
所以Sn/n是以2为公比1为首项的等比数列
2、由1有Sn/n是以2为公比1为首项的等比数列
所以Sn/n的通项公式是Sn/n=1*2^(n-1)
即Sn=n2^(n-1)
那么S(n+1)=(n+1)2^n,S(n-1)=(n-1)2^(n-2)
An=Sn-S(n-1)
=n2^(n-1)-(n-1)2^(n-2)
=n*2*2^(n-2)-(n-1)2^(n-2)
=[2n-(n-1)]*2^(n-2)
=(n+1)2^(n-2)
=(n+1)*2^n/2^2
=(n+1)2^n/4
=S(n+1)/4
所以有S(n+1)=4An

1、A(n+1)=S(n+1)-Sn
An+1=(n+2)sn/n 变为 S(n+1)-Sn=(n+2)Sn/n
化简整理得 nS(n+1)=2nSn+2Sn=2Sn(n+1)
so,S(n+1)/(n+1)=2*(Sn/n)可证等比
2、由1得,Sn/n=2^(n-1)
SO, Sn=n2^(n-1)
SO,S(n+1)=(n+1)2^n<...

全部展开

1、A(n+1)=S(n+1)-Sn
An+1=(n+2)sn/n 变为 S(n+1)-Sn=(n+2)Sn/n
化简整理得 nS(n+1)=2nSn+2Sn=2Sn(n+1)
so,S(n+1)/(n+1)=2*(Sn/n)可证等比
2、由1得,Sn/n=2^(n-1)
SO, Sn=n2^(n-1)
SO,S(n+1)=(n+1)2^n
又An=[(n+1)/(n-1)]*S(n-1)
=[(n+1)/(n-1)]*(n-1)*2^(n-2)
=(n+1)*2^(n-2)=(1/4)*(n-1)*2^n=(1/4)S(n+1)
SO,sn+1=4an

收起

已知数列{an}的前n项和记为sn,且a1=2,an+1=sn+2.求数列an的通项公式. 数列An的前n项和为Sn,已知A1=1,An+1=Sn*(n+2)/n,证明数列Sn/n是等比数列 数列{an}的前n项和记为sn,已知a1=1,an+1=((n+2)/n)sn(n∈n+),证明:(1)数列{sn/n}是等比数列;(2)sn+1=4an 详细 数列{an}的前n项和记为Sn,已知a1=1,an+1=(n+2*)Sn/n(n=1,2,3…),证明数列{Sn/n}是等比数列;Sn+1=4an 数列{an}的前n项和记为Sn,已知a1=1,an+1=n+2/n Sn(n=1,2,3,...)证明:(1)数列{Sn/n}是等比数列.(2)Sn+1=4*an 数列{an}的前n项和记为Sn,已知an=5sn-3(n∈N)求a1+a3+...+a2n-1的和 已知数列{an}的前n项和为Sn,若a1=1/2,Sn=n^2an-n(n-1)求Sn,an 已知数列an是等差数列,且a1不等于0,Sn为这个数列的前n项和,求limnan/Sn.limSn+Sn-1/Sn+Sn-1 数列{an}的前n项和记为sn,已知a1=1,An+1=(n+2)sn/n 1数列{sn/n}是等比数列 2sn+1=4an数列{an}的前n项和记为sn,已知a1=1,An+1=(n+2)sn/n 1 数列{sn/n}是等比数列 2 sn+1=4an 已知数列 an 的首相为a1=2,且an+1=1/2(a1+a2+……+an)(n∈N+),记Sn为数列{an}的前n项和,则Sn=? 已知数列{an}的前n项和记为Sn,已知a1=1,a(n+1)=[(n+2)/n]Sn,证明:(1)数列{Sn/n}是等比数列;(2)S(n+1)=4Sn 数列:已知数列{an}前 n项和为Sn,且a1=2,4Sn=ana(n+1).求数列{an}的通项公式. 已知数列[AN]的前N项和为SN且A1=1SN=N²AN[N∈N'] 猜想SN的表达式并验证 【急!已知Sn为数列{an}的前n项和 a1=1 Sn=n的平方 乘以an 求数列{an}的通项公 已知Sn为数列{an}的前n项和,a1=1,Sn=n²•an,求数列{an}的通项公式 已知数列{an}的前N项和为sn a1=1an+1=sn+3n+1,求数列{an}的通项公式 设数列An的前n项和为Sn,已知a1=1,An+1=Sn+3n+1求证数列{An+3}是等比数列 已知数列an的前n项和为Sn,Sn=三分之一×【a1-1】求a1,a2 .求证数列an是等比数列