过原点作抛物线y=x∧2+4的切线,切线与抛物线y=x∧2+4围成的平面图形D,求D绕x轴旋转所得旋转体的体积

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/30 13:03:13
过原点作抛物线y=x∧2+4的切线,切线与抛物线y=x∧2+4围成的平面图形D,求D绕x轴旋转所得旋转体的体积
xRN@:!հhY.\"AL%Q|`[Ẓ0nf9sόME5<Nj-[E_(6Ar#DkAhxFOe. ft:dLsHknx6Gf0W'3FyS'nn]a7%CdUˈ_ý3p!U48CQw7 ;bΘF,ka0p`IO3-(nR yD|sI;BHu#,3:Z'@O(DKhռrda!0}LN<9:~Ci_fb!#$%QFSP46ZKW٭ݔ9$

过原点作抛物线y=x∧2+4的切线,切线与抛物线y=x∧2+4围成的平面图形D,求D绕x轴旋转所得旋转体的体积
过原点作抛物线y=x∧2+4的切线,切线与抛物线y=x∧2+4围成的平面图形D,求D绕x轴旋转所得旋转体的体积

过原点作抛物线y=x∧2+4的切线,切线与抛物线y=x∧2+4围成的平面图形D,求D绕x轴旋转所得旋转体的体积
旋转体是一个圆柱体
求出两个交点的坐标,得先求出切线方程,用直线的点斜式,设斜率为k,然后用直线与抛物线联立方程组,消去x或y,得到一个一元二次方程,其判别式等于0,求出k的值等于正负4.接着算出两交点坐标为(2,8),(-2,8),两点之间的距离为4,离x轴的距离为8
圆柱体的体积V= =πR^2*h,其中R=8,h=4,最后算得V=256 π