y=6tan(x/4) 怎么微分啊.求dy/dx!

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/28 16:23:55
y=6tan(x/4) 怎么微分啊.求dy/dx!
x)5+IӨ7Txdg}v=ڥlcSJ~JMR>* lH1ź}@U% O;f*@(ϧl|鄎{MtkgX 0[YRdEm͊S4J44 ΀iAAN/.H̳́fTa_gdMdylƼ?ٌN>|0G 3N- v5B2^߾

y=6tan(x/4) 怎么微分啊.求dy/dx!
y=6tan(x/4) 怎么微分啊.求dy/dx!

y=6tan(x/4) 怎么微分啊.求dy/dx!
设x/4=t 则 y=6tant t=x/4
由复合函数求导公式:
dy/dx=dy/dt*dt/dx
=6sec^2(t)*(1/4)
=3/2*sec^2(x/4)

dy/dx=6(sec(4/x))^2*(1/4)
=(3/2)(sec(4/x))^2

这是复合函数的微分
y‘=6tan’(x/4)*(x/4)'=6sec²(x/4)*1/4=3/2sec²(x/4)