已知O为坐标原点,向量OA=(sinα,1),向量OB=(cosα,9),OC=(-sinα,2),点P满足向量AB=向量BP1.记函数f(α)=向量PB*向量CA,α∈(-π/8,π/2)讨论函数的单调性并求其值域2,若OPC三点共线 ,求|向量OA+向量OB|的值

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/24 06:32:16
已知O为坐标原点,向量OA=(sinα,1),向量OB=(cosα,9),OC=(-sinα,2),点P满足向量AB=向量BP1.记函数f(α)=向量PB*向量CA,α∈(-π/8,π/2)讨论函数的单调性并求其值域2,若OPC三点共线 ,求|向量OA+向量OB|的值
xVNQ~L串Py4!qD\QiVIPcH3ӟռιO;]d=Lזqj6ؼWN!?ZnH$MLu0-ĥB>A;3fs|ȩdvX?Vt%vpsJ׍;>[Sa >kfio5mʹk5E j*AVcyG~h'? ƸE䵥{''k}GGy蚻9fb-og\]W]iրWb5`8)nALZ@VD3@:f+t~iK ȊԚLٛM-}$7b;0( R:ykmL (?n AW+FsZMMNNggg[!nMj؏Sk7a& "|cL9JIxz!Rtp$Dytﵷ^6#ĒFBdۉQGڐNA r:S=e#.@Q*/o{Ne,*2^ QA/`/IJܚ rR`<c VF;>wזCr*E.Tr+W0o ό(phsJgyV1,sId`IE azWBdm~!'c D+HUij*-I"hV@QhD';3

已知O为坐标原点,向量OA=(sinα,1),向量OB=(cosα,9),OC=(-sinα,2),点P满足向量AB=向量BP1.记函数f(α)=向量PB*向量CA,α∈(-π/8,π/2)讨论函数的单调性并求其值域2,若OPC三点共线 ,求|向量OA+向量OB|的值
已知O为坐标原点,向量OA=(sinα,1),向量OB=(cosα,9),OC=(-sinα,2),点P满足向量AB=向量BP
1.记函数f(α)=向量PB*向量CA,α∈(-π/8,π/2)讨论函数的单调性并求其值域
2,若OPC三点共线 ,求|向量OA+向量OB|的值

已知O为坐标原点,向量OA=(sinα,1),向量OB=(cosα,9),OC=(-sinα,2),点P满足向量AB=向量BP1.记函数f(α)=向量PB*向量CA,α∈(-π/8,π/2)讨论函数的单调性并求其值域2,若OPC三点共线 ,求|向量OA+向量OB|的值
第一个问题:
∵向量OA=(sinα,1)、向量OB=(cosα,9)、向量OC=(-sinα,2),
∴向量AB=向量OB-向量OA=(cosα-sinα,8),
 向量CA=向量OA-向量OC=(2sinα,-1).
∴向量BP=(cosα-sinα,8),∴向量PB=-向量BP=(sinα-cosα,-8).
∴f(α)=向量PB·向量CA=2sinα(sinα-cosα)+8
=2(sinα)^2-2sinαcosα+8=1-cos2α-sin2α+8=9-(sin2α+cos2α)
=9-√2[sin2αcos(π/4)+cos2αsin(π/4)]=9-√2sin(2α+π/4).
∵-π/8<α<π/2,∴-π/4<2α<π,∴0<2α+π/4<π+π/4,
∴当0<2α+π/4≦π/2时,f(α)单调递减,当π/2<2α+π/4<π+π/4时,f(α)单调递增.
由0<2α+π/4≦π/2,得:-π/4<2α≦π/4,∴-π/8<α≦π/8.
由π/2<2α+π/4<π+π/4,得:π/4<2α<π,∴π/8<α<π/2.
即:函数f(α)的单调递减区间是(-π/8,π/8],单调递增区间是(π/8,π/2).
∵0<2α+π/4<π+π/4,∴-√2/2<sin(2α+π/4)≦1,∴-√2≦-√2sin(2α+π/4)<1,
∴9-√2≦9-√2sin(2α+π/4)<10.
∴函数f(α)的值域是[9-√2,10).
第二个问题:
∵向量AB=(cosα-sinα,8)、向量BP=(cosα-sinα,8),
∴向量AP=(2cosα-2sinα,16),又向量OA=(sinα,1),
∴向量OP=向量OA+向量AP=(2cosα-sinα,17),而向量OC=(-sinα,2).
∵O、P、C三点共线,∴向量OP、向量OC共线,∴2(2cosα-sinα)+17sinα=0,
∴4cosα+15sinα=0,∴tanα=-4/15.
由-π/8<α<π/2、tanα=-4/15,得:-π/8<α<0,
∴sinα=-√{(sinα)^2/[(cosα)^2+(sinα)^2]}=(tanα)/√[1+(tanα)^2]
=-(4/15)/√[1+(4/15)^2]=-4/√(225+16)=-4/√241.
∴cosα=√[1-(sinα)^2]=√(1-16/241)=15/√241.
∴sinα+cosα=11/√241,∴(sinα+cosα)^2=121/241.
∵向量OA=(sinα,1)、向量OB=(cosα,9),
∴向量OA+向量OB=(sinα+cosα,10),
∴|向量OA+向量OB|=√[(sinα+cosα)^2+100]=√(121/241+100)
=√24221/√241.

已知向量AB=,B,O为坐标原点,则向量OA的坐标为 已知向量OA=(2cosα,2sinα),向量OB=(-sinβ,cosβ),其中O为坐标原点,若β=α-π/6,则|向量AB|= 已知向量OA=a=(cosα,sinα),向量OB=b=(2cosβ,2sinβ),向量OC=c=(0,2),其中O为坐标原点.已知向量OA=a=(cosα,sinα),向量OB=b=(2cosβ,2sinβ),向量OC=c=(0,2),其中O为坐标原点,且0 已知向量OA=(λcosα,λsinα)(λ≠0)向量OB=(-sinβ,cosβ)其中O为坐标原点拜托了各位 谢谢 在△AOB(O为坐标原点)中,向量OA=(cosα,sinα),向量OB等于(2cosβ,2sinβ),若向量OA·向量OB等于-1,则△AOB的面积为? 已知向量OA=(λcosa,λsina)(λ≠0)向量OB=(-sinβ,cosβ),其中O为坐标原点1、若β=α-π/6,求向量OA与向量OB的夹角 2、若向量OA的绝对值≥2向量OB的绝对值 对于任意实数α、β都成立,求实数λ的取 已知O为坐标原点,A(cosα,sinα),α∈R,|OB向量|=2,MN向量=(1-t)OA向量—OB向量,t∈R,当|向量MN|取得最小值时t=t0,t∈(1,2),求向量OA与向量OB的夹角θ的取值范围 已知O为原点,向量OA=(3,1)向量OB=(-1,2),向量OC与向量OB垂直,向量BC与向量OA平行,又向量OD+向量OA=向量OC,求向量OD的坐标? 已知O为原点,向量OA=(3,1),向量OB=(-1,2),向量OC与向量OB垂直,向量BC与向量OA平行,又向量OD+向量OA=向量OC,求向量OD的坐标 已知O为坐标原点,向量OA=(1,3),向量OB=(3,-1),且向量AP=2向量PB,则点P的坐标为? 已知向量OA=(3,2) OB=(3,1) O为坐标原点 计算绝对值向量AB的值 设O为坐标原点,已知向量OA=(2,4),向量OB=(1,3),且OC垂直于OA,AC//OB,则向量OC等于? 已知O为坐标原点,向量OA=(1,0),向量OB=(cosX,sinX),OC=(cos2x,sin2x)求证OA+OC与OB共线,且OA-OC与OB垂直已知O为坐标原点,向量OA=(1,0),向量OB=(cosX,sinX),OC=(cos2x,sin2x).求证OA+OC与OB共线,且向量OA-向量OC与OB垂直 已知向量OA=(λcosα,λsinα)(λ≠0),OB=(-sinβ,cosβ),其中O为坐标原点.若β=α+π/6,且λ>0,求向量OA与向量OB的夹角θ 已知向量OA=(3,1),向量OB=(-1,2),向量OC垂直于向量OA ,向量BC平行向量OA,O为原点坐标,若向量OD满足条件 已知O为坐标原点,向量OA=(sinα,1),向量OB=(cosα,9),OC=(-sinα,2),点P满足向量AB=向量BP1.记函数f(α)=向量PB*向量CA,α∈(-π/8,π/2)讨论函数的单调性并求其值域2,若OPC三点共线 ,求|向量OA+向量OB|的值 已知O为坐标原点,向量OA=(sinα,1),向量OB=(cosα,9),OC=(-sinα,2),点P满足向量AB=向量BP1.记函数f(α)=向量PB*向量CA,α∈(-π/8,π/2)讨论函数的单调性并求其值域2,若OPC三点共线 ,求|向量OA+向量OB|的值 已知向量OA=(3,1),向量OB=(-1,2),向量OC垂直于向量OB,向量BC平行向量OA,O为原点坐标,若向量OD满足条件