AM,CM,分别平分∠BAD,∠BCD,求证:∠M=二分之一(∠B +∠D)
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/17 22:44:50
AM,CM,分别平分∠BAD,∠BCD,求证:∠M=二分之一(∠B +∠D)
AM,CM,分别平分∠BAD,∠BCD,求证:∠M=二分之一(∠B +∠D)
AM,CM,分别平分∠BAD,∠BCD,求证:∠M=二分之一(∠B +∠D)
连AC,则
证明:连接AC
∵ ∠B+∠ACB+∠BAC=180°
∠D+∠DAC+DCA=180°
∠M+∠MAC+∠MCA=180°
又 ∵AM,CM,分别平分∠BAD,∠BCD
∴∠MAB=∠MAD;∠MCD=∠MCB
∴∠M=180°-∠MAC-∠MCA
=180°-(∠BAC-∠MAB)-(∠ACD-∠MC...
全部展开
证明:连接AC
∵ ∠B+∠ACB+∠BAC=180°
∠D+∠DAC+DCA=180°
∠M+∠MAC+∠MCA=180°
又 ∵AM,CM,分别平分∠BAD,∠BCD
∴∠MAB=∠MAD;∠MCD=∠MCB
∴∠M=180°-∠MAC-∠MCA
=180°-(∠BAC-∠MAB)-(∠ACD-∠MCD)
2*∠M =2*(180°-(∠BAC-∠MAD)-(∠ACD-∠MCB))
=360°-2(∠BAC-∠MAD)-2(∠ACD-∠MCB)
=360°-2(∠BAC-∠MAD)-2(∠ACD-∠MCB)
=360°-∠BAC -(∠BAC-2∠MAD)-∠ACD -(∠ACD-2∠MCB)
=360°-∠BAC -∠DAC-∠ACD -∠ACB
=360°-(∠BAC +∠ACB)-(∠ACD +∠DAC)
=360°-(180°-∠B)-(180°-∠D)
=∠B+∠D
∴∠M=二分之一(∠B +∠D)
证毕
收起