若f(n)=[1/(n+1)]+[1/(n+2)]+[1/(n+3)]+``` ```+(1/2n),则f(n+1)-f(n)=

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/03 03:40:26
若f(n)=[1/(n+1)]+[1/(n+2)]+[1/(n+3)]+``` ```+(1/2n),则f(n+1)-f(n)=
xP= 0LE`;8p)({۱k[i7|HFgFA[b'q'=7aRӴ5SE`6:TiKLhA\}8ud3pWʜvUHFSO3}vvfwAwD6"?ums.÷@A1)#r@E1=>@kNhl# G0@h/ Xͥ`[?jiH

若f(n)=[1/(n+1)]+[1/(n+2)]+[1/(n+3)]+``` ```+(1/2n),则f(n+1)-f(n)=
若f(n)=[1/(n+1)]+[1/(n+2)]+[1/(n+3)]+``` ```+(1/2n),则f(n+1)-f(n)=

若f(n)=[1/(n+1)]+[1/(n+2)]+[1/(n+3)]+``` ```+(1/2n),则f(n+1)-f(n)=
[1/(2n+1)]-[1/(2n+2)]

f(n+1)=1/(n+2) + 1/(n+3) +……+ 1/(2n+1) + 1/(2n+2)
所以两者之差=1/(2n+1) + 1/(2n+2) - 1/(n+1)

1/(2n+1)-1/(2n+2)

f(n)=1/(n+1)+1/(n+2)+1/(n+3)+ ```+1/(2n)
f(n+1)= 1/(n+2)+1/(n+3) +… +1/(2n) +1/(2n+1) + 1/(2n+2)
则f(n+1)-f(n)=1/(2n+1)+1/(2n+2)-1/(n+1)
=1/(2n+1)+1/(2n+2)-2/(2n+2)
=1/(2n+1)-1/(2n+2)