已知数列an中,a1=1,当n≥2时,其前n项和为Sn,满足Sn²=an(Sn-1)1求证1/SN 是等差数列 2.求证Bn=Log2 sn/sn+2,{bn}的前n项和Tn,求满足T大于等于6的最小正整数求满足Tn大于等于6的最小正整数n
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/20 17:12:26
已知数列an中,a1=1,当n≥2时,其前n项和为Sn,满足Sn²=an(Sn-1)1求证1/SN 是等差数列 2.求证Bn=Log2 sn/sn+2,{bn}的前n项和Tn,求满足T大于等于6的最小正整数求满足Tn大于等于6的最小正整数n
已知数列an中,a1=1,当n≥2时,其前n项和为Sn,满足Sn²=an(Sn-1)
1求证1/SN 是等差数列 2.求证Bn=Log2 sn/sn+2,{bn}的前n项和Tn,求满足T大于等于6的最小正整数
求满足Tn大于等于6的最小正整数n
已知数列an中,a1=1,当n≥2时,其前n项和为Sn,满足Sn²=an(Sn-1)1求证1/SN 是等差数列 2.求证Bn=Log2 sn/sn+2,{bn}的前n项和Tn,求满足T大于等于6的最小正整数求满足Tn大于等于6的最小正整数n
让我来详细解答吧:
(1)Sn²=an(Sn-1)
Sn²=[sn-s(n-1)]*(sn-1)
=Sn²-sn*sn(n-1)-sn+sn(n-1)
sn-sn(n-1)=-sn*sn(n-1) 两边同除以sn*sn(n-1)
1/sn-1/sn(n-1)=1 (n.>=2,n∈N*)
经检验,当=1时,原式依然成立.
(2)Bn=Log2 (sn/sn+2)
利用对数展开公式(比值挪到外面是减法运算)
Bn=Log2( sn/sn+2)=,Bn=Log2( sn)-Log2(sn+2)
我们从B1开始看B1=Log2( s1)-Log2(s3)
B2=Log2( s2)-Log2(s4)
B3= Log2( s3)-Log2(s5)
B4=Log2( s4)-Log2(s6)……你发现规律和重复元素了吧.这些加到Bn就是Tn,中间一正一负的互相抵消了,剩下了log2(S1)+ log2(s2)- log2(sn+1)- log2(sn+2)这四项(后面的你可以列出发现,后面减去这两项前面都没有和他一样的让他抵消)Tn=log2(S1)+ log2(s2)- log2(sn+1)- log2(sn+2),凑在一起
=log2[(S1*s2)/(sn+1)*(sn+2)]
又,Sn=1/n (n∈N*)
Tn=Log2[(1/2)*(n+1)(n+2)]>=6
两边以2为底次幂,(1/2)*(n+1)(n+2)>=2的6次方=64
(n+1)(n+2)>=128
我们知道11²=121
11*12=132 超过了,肯定就是10*11=110了 n+1=10
n=9 应该是最大正整数是9 不是最小正整数
Sn²=an(Sn-1)
Sn²=[sn-s(n-1)]*(sn-1)=Sn²-sn*sn(n-1)-sn+sn(n-1)
sn-sn(n-1)=-sn*sn(n-1) 两边同除以sn*sn(n-1)
1/sn-1/sn(n-1)=1 数列Sn分之1为等差数列
2,球数列an的通项公式
1/sn...
全部展开
Sn²=an(Sn-1)
Sn²=[sn-s(n-1)]*(sn-1)=Sn²-sn*sn(n-1)-sn+sn(n-1)
sn-sn(n-1)=-sn*sn(n-1) 两边同除以sn*sn(n-1)
1/sn-1/sn(n-1)=1 数列Sn分之1为等差数列
2,球数列an的通项公式
1/sn-1/sn(n-1)=1
1/(sn-1)-1/sn(n-2)=1
:
1/s2-1/s1= 1等式相加得
1/sn-1/s1=n-1
1/sn=n
sn=1/n
an=sn-sn-1=1/n-1/(n-1)=-1/n(n-1)
[或用 Sn²=an(Sn-1) an= Sn²/(Sn-1) =1/n²/(1-n)/n]=-1/n(n-1)]
[ n=1 an=1,当n≥2时an=-1/n(n-1) ]
收起
Sn^2=(a1+d)(2a1+(2*1)/2*d-1
=(1+d)^2
Sn=1+d
1/Sn=1/(1+d)为反比例函数
∴1/Sn为等差数列