已知关于x的方程x^2+(2k+1)x+k^2-3=0有实根,则K的取值范围是

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/23 19:14:09
已知关于x的方程x^2+(2k+1)x+k^2-3=0有实根,则K的取值范围是
xQJ@W0t&3?t; "dYP!AkwQт W#acBn]$Zqps6a48 酓ݜ${Ou?WfϞxwbG6xJEI

已知关于x的方程x^2+(2k+1)x+k^2-3=0有实根,则K的取值范围是
已知关于x的方程x^2+(2k+1)x+k^2-3=0有实根,则K的取值范围是

已知关于x的方程x^2+(2k+1)x+k^2-3=0有实根,则K的取值范围是
x^2+(2k+1)x+k^2-3=0有实根
△=(2k+1)^2-4(K^2-3)
=4K^2+4K+1-4K^2+12
=4K+13>=0
所以 k>=-13/4

有实根
判别式大于等于0
所以(2k+1)²-4(k²-3)>=0
4k²+4k+1-4k²+12>=0
4k+13>=0
k>=-13/4

有实根就是△≥0
即(2k+1)^2-4(k^2-3)≥0
k≥-13/4

因为方程有实根
所以▲≥0
即(2k+1)^2-4(k^2-3)≥0
解不等式得
k≥-13/4