请教一个高数题:f(0)=0,且x不等于0时,af(x)+bf(1/x)=c/x.其中a,b,c为常数且a的绝对值不等于b的绝对值.证明f(x)为奇函数
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/27 10:26:13
请教一个高数题:f(0)=0,且x不等于0时,af(x)+bf(1/x)=c/x.其中a,b,c为常数且a的绝对值不等于b的绝对值.证明f(x)为奇函数
请教一个高数题:f(0)=0,且x不等于0时,af(x)+bf(1/x)=c/x.其中a,b,c为常数
且a的绝对值不等于b的绝对值.证明f(x)为奇函数
请教一个高数题:f(0)=0,且x不等于0时,af(x)+bf(1/x)=c/x.其中a,b,c为常数且a的绝对值不等于b的绝对值.证明f(x)为奇函数
因为af(x)+bf(1/x)=c/x ①
令x=1/x
那么af(1/x)+bf(x)=cx ②
由①*b- ②*a
(a²-b²)f(x)=ac/x-bcx
因为a的绝对值不等于b的绝对值
所以a²-b²不等于0
f(x)=c(a/x-bx)/(a²-b²)
f(-x)=c(-a/x+bx)/(a²-b²)=-f(x)
又f(0)=0
所以f(x)是R上的奇函数
由af(x)+bf(1/x)=c/x
令x=1/t
af(1/t)+bf(t)=ct
即bf(x)+af(1/x)=cx
解得f(x)=(c-cx²)/(a+b)x
f(-x)=-(c-cx²)/(a+b)x=-f(x)
所以f(x)为奇函数
af(x)+bf(1/x)=c/x
令x=1/t
af(1/t)+bf(t)=ct
即bf(x)+af(1/x)=cx
解得f(x)=(c-cx²)/(a+b)x
f(-x)=-(c-cx²)/(a+b)x=-f(x)得证
af(x)+bf(1/x)=c/x ①
令x=1/x
那么af(1/x)+bf(x)=cx ②
①②联立解得
(a²-b²)f(x)=ac/x-bcx
f(x)=c(a/x-bx)/(a²-b²)
f(-x)=c(-a/x+bx)/(a²-b²)=-f(x)
又f(0)=0
所以f(x)是R上的奇函数